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Title: Advances in Iterative Learning Control with Application to Structural Dynamic Response

Reconstruction

Author: Johannes Jacobus Arnoldi Eksteen

Supervisor: Prof. P.S. Heyns

Department of Mechanical and Aeronautical Engineering, University of Pretoria

Degree: Philosophiae Doctor

Iterative learning control (ILC) is a repetitive control scheme that uses a learning capability

to improve the tracking accuracy of a desired test system output over repeated test trials. ILC is

sometimes used in response reconstruction on complex engineering structures, such as ground vehicles,

for purposes of fatigue testing. The compensator that is employed in ILC in such cases is traditionally

an approximate, linear inverse model of the closed-loop test system.

This research presents advances in ILC, particularly with respect to its application in response

reconstruction for fatigue testing purposes. The contribution of this research focuses on three aspects:

the use of a nonlinear inverse model in the ILC compensator instead of a linear inverse model; the use

of multiple inverse models, each one defined over a different part of the test frequency band, instead

of one model that covers the entire test frequency band; and the development and use of a new

type of ILC algorithm. The contributions are implemented and demonstrated on a quarter vehicle

road simulator, with favorable results for the use of nonlinear inverse models and multiple inverse

models. The new ILC algorithm is shown to be competitive with the conventional inverse model-

based algorithm, giving comparable to slightly worse results than the conventional ILC algorithm. In

order to invert the nonlinear inverse models this research also presents advances in the stable inversion

method that is used to invert such models.

Keywords: Iterative learning control, response reconstruction, fatigue testing, NARXmodels, Kolmogorov-

Gabor polynomials, system identification, stable inversion, nonlinear, discrete time, Picard iteration,

Mann iteration, quarter vehicle road simulator.

vi

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Acknowledgements

My thanks to everyone who served as study leaders at different times of this research, namely Prof.

P.S. Heyns in recent years, Dr. A.D. Raath in the beginning, Prof. J.L. van Niekerk and Dr. M. Heyns.

Thanks also to former colleagues, in particular C.R. Cater.

The financial assistance of the National Research Foundation and Investmech, Pty. Ltd. is

gratefully acknowledged.

The patience of all involved, including the study leaders, my university, and my family is

gratefully acknowledged.

Jan Eksteen, July 2014

vii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



viii ACKNOWLEDGEMENTS

.

And they shall see His face; and His name shall be in their foreheads.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



ix

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



x NOMENCLATURE

Nomenclature

ai Model parameters in linear system identification

A(q),B(q),F (q) Polynomials obtained in linear parametric system identification

bi Model parameters in linear system identification

c Scalar scale factor in ILC

C Linear operator representing a zero-phase filter in ILC

e(k) White-noise input in discrete time linear models

E Expectation

F (.) NARX model

f(.) Nonlinear function in the dynamical equation of the nonlinear state space formulation

f̄(.) Inverse of f(.)

G(q) Generally an infinite series representing the discrete time impulse response of a

linear discrete time system
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Ḡ Inverse model of G

h(.) Nonlinear function in the output equation of the nonlinear state space formulation

h̄(.) Inverse of h(.)

H(q) Generally an infinite series representing the discrete time impulse response of the

noise model of a linear discrete time system
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Chapter 1

Introduction

1.1 Background

This research deals with adaptations and improvements in a number of control related fields in the

context of response reconstruction, namely stable inversion of nonlinear systems, iterative learning

control, and nonlinear system identification. Response reconstruction is essentially the approach of

reconstructing structural responses in a test specimen in the laboratory for purposes of structural

integrity validation testing (e.g. fatigue testing). The adaptations and improvements in this research

will sometimes relate specifically to the way the above mentioned methods are usually implemented

in response reconstruction.

For fatigue testing by means of response reconstruction to be reliable, the responses that are

desired to be reconstructed need to be realistic, which means that they are representative of nor-

mal usage of the test specimen in fatigue terms (dynamic representativity is implied by this). The

underlying loading/excitation that occurs in service may be either random or deterministic. In the

automotive environment random loading is common. In the aeronautical environment (e.g. wing load-

ing) the loading often contains both random and deterministic components. The loading may also

have discernable sequence effects (also common in the aeronautical environment), which can be fa-

tigue relevant (Bannantine et al. 1990). Fatigue testing can be done using either sinusoidal loading,

block loading, stationary random loading, or actual service loading, with the latter being clearly the

most representative in that it gives account of low frequency mean variations, statistical properties

as well as sequence effects (Wright, 1999:61-74), which is important for the loading to be realistic in

fatigue terms. While load history characterization in fatigue terms in more reduced terms is possi-

ble, e.g. stress-level crossings, time between levels and power spectral density (PSD) graphs, unless

either of the former two are not combined with PSDs, they are considered inferior to basic range and

mean counting with cumulative damage calculation. While the latter representation of fatigue content

1
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2 CHAPTER 1. INTRODUCTION

using the Palmgren-Miner rule is still subject to inaccuracy, this is largely attributed to inaccurate

accounting of load sequence effects. Thus, for fatigue testing to give proper account of normal service

loading in fatigue terms is best achieved by reproducing the mean-and-ranges information of the ser-

vice loading data, as well as the sequence information in the service loading data. This clearly points

to the accurate reconstruction of actual service loading without much simplification as the most reli-

able approach in fatigue testing, which can be achieved by the reconstruction of the actual, in-service

structural responses.

The reconstruction of service responses in fatigue testing often requires the desired responses to

be logged during field measurements on the test specimen prior to the test, after which the responses

are reconstructed in the test specimen in the laboratory. The actual reconstruction is accomplished

using an iterative control algorithm called iterative learning control (ILC), which originated in the

early 1970s in the robotics and automation field. Iterative learning control is essentially an iterative

control scheme during which the test inputs are refined over successive iterations until the achieved

test outputs/responses match the desired outputs/responses as closely as possible.

ILC is capable under favourable conditions (low levels of nonlinearity and low frequency content

of signals) of achieving the reconstruction with remarkably simple compensators employed in the

algorithm. However, to be truly reliable and safe the algorithm needs to ideally use an inverse dynamic

model of the closed-loop test system in the compensator. (With “safe” is meant that the achieved test

responses converge in well-behaved manner to the desired values without, for example, large overshoot

prior to convergence.) Such models are usually obtained by system identification of black box models

(Ljung (1999), Nelles (2001) and Billings (2013)). This means the models are not necessarily based

on actual known system dynamics, but are calculated by optimizing the model’s parameters until the

model is able to predict the output from an arbitrary input with sufficient accuracy.

A good example of when we want to perform ILC with safe, reliable and not too rapid conver-

gence of the achieved responses to the desired responses is when performing response reconstruction

for purposes of full-scale automotive fatigue/durability testing in the laboratory (Raath (1993a, 1993b

and 1997), Weal et al. (1997), Mianzo et al. (1998), De Cuyper et al. (1999), and French (2000)). In

this approach either the vehicle’s wheel hubs are fixed to electro-hydraulic actuators, or the tyres may

rest on pans on top of the actuators, with the actuators under PID feedback control. Full-scale auto-

motive fatigue tests are usually dynamic in nature. (The type of fatigue testing usually performed in

aeronautical applications is typically quasi-static in nature, and the responses that are reconstructed

are synthetic, often generated from load spectra.) Other uses of response reconstruction are also

possible (in automotive and other industries), for example noise-vibration-harshness (NVH) testing,

functional vibration testing, and shock testing. The response reconstruction procedure using the ILC

algorithm is sometimes also referred to as dynamic service load simulation, remote parameter control

(RPC), time-waveform replication (TWR), or iterative transfer function control (ITFC).
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1.1. BACKGROUND 3

Response reconstruction for full-scale automotive fatigue testing in the laboratory also happens

to be one of the first industry applications of the ILC procedure (Cryer et al. 1976). In fact, in as

much as being applied to a discrete-time nonlinear system (as most physical test systems usually are

to some degree), using an approximate linear inverse model in the ILC compensator that is stably

solved in the frequency domain (i.e. non-causally), and using a scale factor in the ILC compensator, it

was surprisingly advanced for such an early implementation. In recent decades a variety of analytical

methods have also been developed to better evaluate the fatigue strength of dynamically loaded, com-

plex structures analytically/computationally, including dynamic and nonlinear finite element analysis

and better modelling of fatigue damage mechanisms. Though these methods are becoming more and

more accurate, experimental validation of structural integrity is still the most reliable approach for

such structures, especially in safety critical situations or situations with high cost implications of

failures.

The University of Pretoria has been active in the development of response reconstruction meth-

ods since the late 1980s. Initially the focus had been on frequency domain methods for obtaining the

inverse model (via system identification of linear models in the frequency domain), but the focus soon

shifted to linear parametric models obtained by system identification in the time domain (Raath,

1993a). With the shift to the time domain came the difficulty of stably inverting models that, in

inverse form, often tended to be unstable. Early methods to cope with this involved solving the in-

verse models anti-causally (i.e. in reverse time). Later, soon after the theory of stable inverse of linear

systems was first published (Chen & Paden, 1992), the fundamentals of the stable inversion approach

was independently developed and implemented in the inversion of time domain models in response

reconstruction at the university with contributions from industry partners.

The mid 1990s saw early investigations at the university into the possible use of nonlinear

polynomial models in response reconstruction (Cater, 1997), with the early conclusions being that the

potential gains in accuracy are limited in case of automotive fatigue testing. The research reported

in this thesis is based on the supposition that potential applications of response reconstruction are

widely varying and, with the ever increasing need for test accuracy and reliability, in the long run the

investment in the extra complexity and computational burden will be justified. The initial impetus

for this research was therefore the implementation of nonlinear polynomial models in response recon-

struction, and the exploitation of the theory of stable inversion of nonlinear models that has since been

published (Devasia et al. 1996 and Zeng & Hunt, 2000) to invert the models. Another major early

impetus was basing the response reconstruction algorithm on the solid theoretical footing that ILC

already enjoyed in the literature (the ILC algorithm had been developed and implemented in response

reconstruction for fatigue testing purposes independently of the formal, publicized development of ILC

in the robotics and automization field).

Over the course of this research and during the gradual development of software to serve as both
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Figure 1.1: Six-axis durability test on Class 8 truck.

a research vehicle for this research and a tool with which to serve the needs of industry (with respect

to fatigue, shock and vibration testing), a number of tests were conducted for industry, sometimes

employing some of the elements of this research (Eksteen et al. 2012). See Fig. 1.1 - Fig. 1.3. These

were early implementations, done under strict budget constraints using available jigging hardware.

(Future upgrades at the university will see, for example, the develoment of bell-crank systems for load

application in automotive test rigs.)

In dealing with the topics of real-time control systems, stable inversion, and iterative learning

control this research is very focussed on the topic of inversion of dynamic system models. For this

reason this chapter will seek to first establish the inversion underpinnings of real-time control systems,

from which the focus shifts slightly to the inversion of the model of a closed-loop control system. From

the inversion of the model of a closed-loop control system, another not-too-big step can be taken to

present the iterative learning control procedure, with all the above aimed at achieving exact, or as

accurately as possible, tracking of a given desired output for a test sytem/plant. With these building

blocks firmly in place the discussion turns to their use in an engineering application, namely response

reconstruction, which is usually done for purposes of fatigue testing in the laboratory, but also for

other purposes. At this point a brief introduction will be given to response reconstruction and the

methodology will be explained. Novel contributions of the research will be highlighted where relevant

in the discussion in this chapter.
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Figure 1.2: Five-axis durability test on a Class 7 truck cab.

Figure 1.3: Two-axis shock and vibration test on defence industry electronics.
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6 CHAPTER 1. INTRODUCTION

1.2 Asymptotic Tracking

Consider a dynamical system represented by an operator G. Assume the existence of a desired plant

output, which we would like the plant to track as closely as possible. Normally a tracking control

system would be used to accomplish asymptotic tracking of the desired plant output. In this study,

however, we are concerned with achieving exact tracking of the desired output by the plant. This,

of course, requires the determination of the input signal exactly corresponding to the desired output,

implying that exact tracking is tantamount to exact inversion of the plant. It can be shown, in fact,

that system inversion lies at the core of the concept of asymptotic tracking control systems (Goodwin,

Graebe and Salgado, 2001:24-37).

One conceptual possibility for using the inverse model of a system in the control of the system

to achieve a desired output (also called a desired response or reference output) is the open-loop (feed-

forward) control architecture, shown in Fig. 1.4, in which Ḡ is an inverse model of the plant. (The hat

symbol is widely used to indicate an approximate version or a model of a system, as result of which

we will rather use an overbar than a hat symbol to indicate the inverse of a system, and occasionally

the −1 exponent.) For this approach to be truly accurate requires an exact inverse model to be used,

the physical system (plant) and the inverse model to be stable, and the absence of disturbances. Any

disturbances or model error will generally directly translate into a loss of tracking accuracy. Obtaining

an accurate inverse model can also be challenging as the exact inverse model is frequently unstable

due to the physical system often being non-minimum phase.

Towards finding a more robust concept for achieving good tracking control, the scheme shown

in Fig. 1.5 may be proposed, in which Ĝ is a model of the plant. If the plant input signal is designated

u, the output y, and the plant by the operator G, then

y = Gu ,

(in functional analysis operators are used without parenthesis) and the plant inverse is given as

u = G−1y .

Let the desired plant output be r. In Fig. 1.5 the inverse model of Fig. 1.4 is now replaced by a

feedback controller in series with the plant, with a compensator compensator H and Ĝ a model of the

plant. The output of the controller is:

u = H(r − Ĝu)

Inverting H yields

r − Ĝu = H−1u ,

from which

u = Ĝ−1(r −H−1u) .
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Figure 1.4: An open-loop (feed-forward) control strategy employing an inverse model of the plant.

yr u+

-

Plant
G
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Ĝ

Figure 1.5: An open-loop control strategy employing a feedback controller with a plant model Ĝ in

series with the plant.

It follows that if H has a high gain, then H−1 is small and r−H−1u ≈ r, causing this equation - and

thus the feedback controller - to represent an approximate inverse of the plant. Thus, the high-gain

feedback controller in Fig. 1.5 is still an open-loop control system but approximates the plant inverse

without explicitly using it.

Due to the controller in Fig. 1.5 still being an open-loop controller, it still suffers the weaknesses

of open-loop control, namely the effect of model inaccuracy and disturbances. However, if we replace

the model Ĝ of the plant in Fig. 1.5 with the actual plant, G, as in Fig. 1.6, then we are no longer

dependent on the plant model having to be accurate, but use the plant itself in the control system.

The closed-loop control system in Fig. 1.6 achieves the same goal as the use of an inverse model as

feedforward controller, only more robustly, and is therefore at its core a robust form of approximate

system inversion. This type of feedback control system is called an asymptotic tracking control system

because it causes the plant to attempt to track the desired plant output that is fed to the input

of the control system, with tracking of a fixed value (a set point) being theoretically only achieved

asymptotically (i.e. in infinite time). Note that other functions of the control system may be to

stabilize the plant if needed, shape the dynamic response of the plant, and reduce the sensitivity of

the plant to disturbances. Asymptotic tracking control systems are frequently required in industry to

track randomly-varying desired plant outputs; However, the tracking of more broad-band signals is

generally only approximate due to the fundamental limitations of real-time feedback control systems.
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Figure 1.6: A closed-loop (tracking) control system
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Figure 1.7: Inversion of a closed-loop system T via an off-line, open-loop compensator T̄ .

1.3 Exact Tracking and System Inversion

One of the principal limitations of a real-time feedback control system, such as the asymptotic tracking

control system, is its inherently causal nature. The problem with this is that plants are frequently

non-minimum phase (especially sampled test systems), and therefore tend to have unstable zeros,

which results in the inverses of the plant having unstable poles. Inverse models with unstable poles

can only be solved for bounded solutions non-causally. Since exact tracking of a desired plant output

is effectively the exact inversion of the plant for that output, we need to do non-causal calculations or

risk losing tracking accuracy. Clearly exact tracking therefore cannot generally be achieved with real-

time control systems (which are causally constrained). Generally speaking, to achieve exact tracking,

we need to have a feed-forward controller that is serially-linked to the real-time control system and

represents the inverse of the closed-loop control system itself. This is illustrated in Fig. 1.7 for a

closed-loop control system T .

In this configuration the desired output is first fed to the inverse of the closed loop control

system, which calculates the required input signal and feeds it to the real-time control system. Because

the inverse is not in a real-time feedback loop, it may be implemented off-line, which allows it to

be implemented non-causally. To calculate bounded solutions for inverse models using non-causal

methods, we have to use a method called stable inversion, particularly when the model is nonlinear.
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1.4. STABLE INVERSION 9

1.4 Stable Inversion

During inversion of a system T , in the simplest case of a single-axis linear system, the zeros of T

become the poles of the inverse T−1, and vice versa. When T has any stable zeros, the inverse system

will have unstable poles, making it unstable. This phenomenon can be genaralized to nonlinear and

multi input-multi output (MIMO) systems. The stable inversion method firstly constructs the inverse

model T̄ , and secondly solves this inverse model for the bounded solution of the input for a given

output. When the system is nonlinear, the bounded solution of the input is calculated iteratively. For

the continuous-time case see Chen and Paden (1992) and Devasia et al. (1996). For the discrete-time

case see Hunt and Meyer (1997) and Zeng and Hunt (2000).

The iterative solution of the inverse model for a given desired output is in fact a fixed-point

problem. A standard iteration scheme in fixed point problems, which is also the only one reported on

in stable inversion literature, is the Picard iteration scheme. However, fixed-point iteration methods

also feature other iteration schemes that have not yet been reported in stable inversion literature to the

author’s knowledge, namely Mann iteration and Ishikawa iteration. In one of the novel contributions

of this research we will implement these iteration schemes in stable inversion of nonlinear models and

exploit their advantages to achieve better results than with Picard iteration.

Another contribution of this research to stable inversion is the incorporation of a low-pass filter

in the algorithm. The filter eliminates divergence of the algorithm in inverse models at high frequencies,

which frequently result from complications in the system identification methods sometimes used to

obtain the models in the first place.

The non-causal, inverse model-based control scheme shown in Fig. 1.7, while potentially being

capable of exact inversion, still suffers from the problem of sensitivity to model errors and disturbances

due to still being an open-loop controller. Having at our disposal a potentially “quite” accurate non-

causal inverse model that is solved off-line, we have the tools needed to compose an iterative control

scheme that involves the inverse model and uses iterative test trials to compensate for whatever

inaccuracy may still reside in the inverse model. Such a scheme is precisely what is achieved with

iterative learning control, which is discussed next.

1.5 Iterative Learning Control

1.5.1 Concept

Consider a closed-loop control system represented by an operator T , which we would like to track the

desired plant output signal yd as closely as possible. Iterative learning control (ILC) is a repetitive

control scheme that uses a learning capability to improve the tracking accuracy over repeated test trials
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10 CHAPTER 1. INTRODUCTION

of the closed-loop control system (Ahn et al., 2007). The learning mechanism involves calculating the

tracking error of the previous iteration, and then calculating a corrective action from the tracking

error and the inverse model, which is added to the previous input signal to obtain an “updated” input

signal. The updated input signal is intended to improve the tracking accuracy of the next test trial,

following which the tracking error may be calculated again and the process repeated. Under sufficient

conditions for convergence of the algorithm the desired output can be exactly tracked, possibly over

a reduced test bandwidth as may be required to ensure convergence.

ILC is probably best explained by presenting the actual algorithm mathematically: Let the

system input for the ith system trial be designated u(i), the corresponding plant output y(i), thus

y(i) = Tu(i) ,

and let the tracking error of the ith iteration be designated e(i), thus

e(i) = yd − y(i) .

The most basic form of the learning formula of ILC is then given as

u(i+1) = u(i) + Le(i) ,

where L is a (usually linear) operator that is called the ILC compensator. The updated input signal

u(i+1) is thus calculated by the update formula between test trials, i.e. off-line (or in “batch” form).

This also allows the calculations to be done non-causally or in the frequency domain. Specifying the

ILC compensator L is the main aim of the design problem of ILC.

ILC is often presented in the context of systems that have to repeatedly track the same desired

output signal, for example industrial robots working on serial production lines that repeatedly do the

same welding or spray painting job. In this case the real-time control system is typically some type of

asymptotic tracking control system, and ILC then uses the results of the repeated tracking exercises

to further improve the tracking accuracy (for early references see, e.g., Arimoto et al. (1984) and Craig

(1984)). This is done on an ongoing basis, and therefore ILC not only optimizes tracking accuracy

for a given desired output and one specific set of system dynamics, but can also be used to maintain

tracking accuracy by responding to gradual changes in the system dynamics through its “learning”

capability.

1.5.2 The Use of ILC in Response Reconstruction and for Model Inversion

When ILC is implemented purely to obtain the system input resulting in the exact tracking of the

desired output and then terminated once this has been achieved, it implies ILC is being used merely

to reconstruct a desired system response (i.e. output) rather than to maintain tracking accuracy
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1.5. ITERATIVE LEARNING CONTROL 11

over repeated test trials. When used in this way the ILC procedure is referred to here as response

reconstruction. We will also say ILC is used in response reconstruction, partly because

• Response reconstruction for purposes of, e.g., fatigue testing, typically involves more steps than

the reconstruction itself; and

• There are other ways of achieving a response reconstruction, e.g. the above mentioned feed-

forward approach using inverse models of the closed loop test system.

When using ILC purely for response reconstruction, it is essentially used as a once-off inversion pro-

cedure because it calculates the input corresponding to the given desired system output. In this case

it is the physical test system being “inverted”.

We can also replace the physical test system with a system model and perform the test trials

“mathematically”, in which case ILC is being used as an inversion procedure for the system model. The

fact that ILC is capable of exact tracking (subject to sufficient conditions) implies that the inversion

of the model will be exact. It is noteworthy that when we use ILC in this way to invert a model, we

do not calculate the inverse model, but only use the model in the normal sense as if it is a physical

test system. Using ILC in this way is an indirect way of inverting a model because the exact inverse

system model is never calculated, as opposed to the direct approach followed in stable inversion. The

use of ILC to accomplish inversion of nonlinear models was first proposed in Markusson (2002).

1.5.3 Inverse Model-Based ILC Compensators

While ILC is capable of achieving convergence with even very simple forms of the ILC compensator L,

such as a constant gains matrix (the so-called P-type ILC), the rate of convergence achieved with these

compensators is not necessarily monotone. On the contrary, the convergence error (and achieved test

outputs) may grow very large before finally decaying to zero. Achieving monotone convergence over

relatively wide frequency bands generally requires the use of an approximate system inverse model

in L. This is referred to as inverse model-based ILC. The rate of convergence may, additionally, be

slowed down by scaling down L using a scalar scale factor. These aspects have already been explored

in ILC; see, for example, Ghosh and Paden (2001).

When using ILC to invert a nonlinear system model, an approximate linear inverse model

may be calculated for use in the ILC compensator. Such a model may be obtained by linear system

identification, and as such represents a linearized version of the nonlinear test system around the

average operating point represented by the identification data. The linear inverse model may be

improved as an approximation of the actual nonlinear inverse model by generating it as the inverse

of a linearization of the nonlinear model around the average operating point represented by the input

signal of the previous ILC iteration. The linearization and inverse may furthermore be recalculated at
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12 CHAPTER 1. INTRODUCTION

every time point for the state of the input at that time (rendering it time varying). Modifying the ILC-

based inversion of a nonlinear model in this way results in the Newton method of inverting a system

(with appropriate reformulation of the system), which has recently been presented by Smolders et al.

(2008) for continuous-time systems. For a brief introduction to the Newton method of solving nonlinear

equations, see Burden et al. (1993). This shows the ILC-based inversion of a nonlinear model using

an approximate linear time-invariant (LTI) model to be a special case of the novel Newton inversion

method. As a purely ILC approach to be executed on physical test systems this approach is referred

to as Newton method based ILC, and was first presented for nonlinear discrete time systems by Lin

et al. (2006). Promising to realize the advantages of rapid convergence of the Newton method in ILC,

it is worthy of future investigation as an alternative to more complex methods utilizing a nonlinear

inverse model in the ILC compensator (discussed next). Lin et al. (2006) also examine convenient

ways of numerically implementing the algorithm, as does Smolders et al. (2008).

When the physical test system is highly non-linear and/or non-smooth, a good nonlinear system

model may be readily identified, but how to invert the model may still be an open problem. In such

cases, when doing ILC on the model in order to invert it without calculating its actual inverse, the use

of an approximate nonlinear inverse model (e.g. a smooth model with a lower degree of nonlinearity

than the actual model) in the ILC compensator may give better results than an approximate linear

inverse model. The ability to accurately “invert” an accurate but complex model in this way (using

ILC) may then be employed in an ILC compensator to do ILC on such physical test systems. Using

ILC in this way could be a fruitful field of future research. Markusson (2002), however, prefers a

linear ILC compensator based on an approximate linear inverse model, and considers a nonlinear

ILC compensator based on an approximate nonlinear inverse model to be rather unjustified given the

complexity of solving it.

1.5.4 Novel Contributions

In this study as a novel approach we not only implement nonlinear, inverse model-based ILC com-

pensators in ILC of nonlinear test systems, as opposed to using linear inverse-based compensators,

but do so in the response reconstruction context for fatigue and other tests. The use of nonlinear

inverses in the ILC compensator L necessarily requires the use of stable inversion to generally obtain

a bounded solution for the model (unless ILC is used for the model inversion as explained in Section

1.5.2). Note that in case of divergence of ILC with a linear L the use of a nonlinear (and potentially

more accurate) L may result in convergence, may widen the frequency range over which convergence

occurs, or may increase the accuracy of the best results achieved prior to divergence. We will also show

how an accurate (nonlinear) inverse model in L simplifies the ILC dynamics (also shown in Markusson

(2002)), resulting in monotone convergence and allowing better control of the rate of convergence.

We also develop an altogether new ILC algorithm, and show that the alternative algorithm
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1.6. RESPONSE RECONSTRUCTION 13

demonstrates the same properties as the conventional algorithm with regard to convergence and control

of the rate of convergence. The alternative algorithm is relevant only when using a nonlinear L since,

when using a linear L the alternative algorithm is equivalent to the conventional ILC algorithm.

Finally, we also note that the use of Mann and Ishikawa iteration in stable inversion has an

analogy in ILC in that the conventional and alternative ILC algorithms developed here both have

parallels in the Picard and Mann iteration schemes. It is furthermore shown that the application

of Ishikawa iteration to ILC result in novel ILC iteration schemes for both the conventional and

alternative ILC algorithms.

1.6 Response Reconstruction

1.6.1 Methodology

A good example of when we want monotone convergence that is not too rapid is the use of ILC

in response reconstruction for purposes of full-scale fatigue/durability testing in the laboratory of

complex structures subjected to variable-amplitude dynamic loading (e.g. ground vehicles). Full-scale

durability testing in the laboratory of such structures is done by simulating on a representative test

specimen in the laboratory the same structural loading the structure would experience in normal

service, usually at an accelerated rate of damage accumulation in order to expedite the development

cycle of new designs and save test costs. The more representative the desired response is of in-service

loading, and the more accurate the reconstruction of the desired response is, the more reliable the test

is. This implies that the overall process involves various elements, including field measurements to

gather in-service responses, the reconstruction of the desired responses (which involves both a system

identification phase and an ILC phase), evaluation of the achieved test acceleration, followed by actual

fatigue testing. The overall methodology for response reconstruction for fatigue testing is shown in

Fig. 1.8. The ILC algorithm shown in Fig. 1.8 is a generalization of the one described in Section 1.5.1

and is taken from Section 3.3. The methodologies of response reconstruction for other purposes, such

as shock or vibration testing, will be simple variations of Fig. 1.8.

During field measurements (step A in Fig. 1.8) for purposes of fatigue testing it is preferable

to measure the responses of the structure to the service conditions rather than the applied loads,

mostly because the responses are usually easier to measure than the applied loads. Responses such as

strains also allow explicit calculation of cumulative fatigue damage at the sensor locations. The field

measurements are done for two purposes:

• To gather data to represent the normal usage of the structure with. This data, typically the

strains, can then be subjected to cumulative fatigue damage calculations for quantifying the

characteristic average fatigue damage per hour of normal usage for the structure. Other ways
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of characterizing normal-usage service loading from such measurements are also possible, e.g.

PSDs of acceleration data (see Section 1.1).

• To gather response data from which a desired response history, yd, for the anticipated fatigue test

may be selected that is at the same time as representative of actual usage as possible but severe

enough to result in a sufficiently accelerated fatigue test when reconstructed in the laboratory.

For response reconstruction, where the need is for accurate tracking of actual service responses

for the (accelerated) test, the approach used in editing the service response data to obtain the

desired responses is similar to the “time correlated fatigue analysis with damage editing method”

in Halfpenny (2006). See also Shafiullah and Wu (2013) for a helpfull overview of methods aimed

more at component level, and references therein. Cumulative fatigue damage calculations on yd

and comparison with results of fatigue damage calculations on the normal usage measurements

allows projections of test duration and thus test cost to be made in advance.

The specimen is fitted in the laboratory with actuators that are carefully placed so as to be able to

mimic the loads applied to the structure in normal service as closely as possible and with as little as

possible mass-loading of the test specimen. When using electro-hydraulic actuators there is a real-

time control system, typically PID feedback control, for every actuator that utilizes either actuator

load or displacement as feedback. The real-time control system is employed to ensure stability of

the actuators and appropriately shape the dynamic response. (The excitation frequencies that are

normally involved are of such a nature that the specimen is frequently dynamically excited, loosely

meaning the excitation of the structure’s resonant frequencies.) The test system inputs are represented

by the reference input signals of the real-time control systems, namely the control system command

signals for either actuator load or displacement.

Once installed in the laboratory test rig the entire closed-loop control system is dynamically

modelled (step B in Fig. 1.8). This is achieved by calculating a black box model of the system using

system identification. The more common approach in system identification for purposes of response

reconstruction for fatigue testing is to calculate linear models in the frequency domain (so-called

frequency response functions (FRFs)), which can be readily inverted and solved in the frequency

domain. An alternative approach, which is the one employed at the University of Pretoria, is to do

the system identification in the time-domain, resulting in parametric time-domain models, which have

traditionally been chosen to be in linear format (Raath, 1993a).

Having obtained a model T̂ of the closed-loop test system, the model is inverted, giving L̃ :=
¯̂
T ,

and used in the ILC compensator, L, together with a iteration gain c chosen to determine the rate

of convergence of ILC. Traditionally, in response reconstruction, L consists of the product of the gain

and the inverse model, i.e.

L = cL̃ .
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1.6. RESPONSE RECONSTRUCTION 15

ILC is then performed on the test system (step C in Fig. 1.8) to calculate the test system drive signals

that best reconstruct the desired responses. (Smolders et al. (2008) generalises c to a constant matrix.)

Achieving an accurate simulation of the service loading requires exact tracking to be achieved of

the desired output/response signals in the sensors in the laboratory specimen. Such desired responses

have typically been measured at the same sensor locations (on a representative test specimen) under

the normal in-service conditions. By exact tracking of the desired responses the structural stressing

and excitation can be exactly recreated at the sensor locations on the structure. If the actuators

are applied in a realistic manner and the specimen is structurally representative, this ensures that

the stressing and vibration patterns throughout the structure will also be accurately recreated, which

in turn implies accurate reconstruction of the metal fatigue and many other failure mechanisms the

structure would experience in service. Full equivalence may require additions of some environmental

factors such as corrosive environments, temperature, humidity, etc., which are sometimes incorporated

in the laboratory test (Dobson & Schwab, 2006).

Having accomplished the exact or nearly exact tracking, the final input signals to the test

system and the final achieved responses in the test specimen are then saved. The achieved strain

responses in the test specimen may be subjected to cumulative fatigue damage calculations and the

results compared to the normal in-service rates of damage accumulation in order to determine the

test acceleration over normal usage and the required duration of the fatigue test to simulate a given

service life for the structure (step D in Fig 1.8).

Finally, the final input signals may then be repeatedly sent to the system to simulate the

structure’s operational life in the laboratory (step E in Fig 1.8). The input signals are not changed in

order to maintain accurate tracking of the desired responses even if the structure begins to deteriorate

due to fatigue. This is because in normal operation the effect of structural degradation will be

exactly the changes in structural responses experienced in the test specimen, while the applied loading

generally stays the same, which is achieved by not changing the test input signals.

1.6.2 New Developments and Contributions

The literature of response reconstruction (with which is meant basically the literature of simulation

testing of ground vehicles for durability/fatigue evaluation purposes) does not refer to the convergence

theory of ILC, alternative formulations and variations in the ILC algorithm, or even use the ILC ter-

minology, except for a few very recent exceptions (Smolders et al. (2008) and Deckers et al. (2012)).

Not even the use of stable inversion in either linear or nonlinear ILC compensators have been reported

in either ILC or response reconstruction literature until Markusson (2002). ILC theory contributes to

response reconstruction a good understanding of the principles for achieving convergence, controlling

the rate of convergence, increasing the robustness of convergence against model inaccuracy, and han-
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Figure 1.8: Methodology used in response reconstruction for purposes of fatigue testing. Here Q and

C are zero phase filters (see Section 3.3.4).
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1.7. DOCUMENT OVERVIEW 17

dling disturbances. While this study does not focus on the handling of disturbances, it does present

from the field of ILC literature in the robotics and automation context guidelines for the design of the

compensator and choice of filters for the inverse-based compensator presented in this research.

The use of a nonlinear inverse model in the ILC compensator instead of a linear model was

already mentioned in Section 1.5.4 as a novel approach not just for ILC, but for response reconstruc-

tion in particular. Smolders et al. (2008) has since reported on similar efforts in the fatigue testing

setting. The advantages of using a nonlinear, inverse model-based ILC compensator instead of a lin-

ear inverse model-based ILC compensator will be evaluated on an experimental quarter vehicle road

simulator. The nonlinear inverse model used in the inverse-based ILC compensator will be obtained

from stable inversion performed on a model obtained by nonlinear parametric system identification.

The model formulation that will be used is the polynomial nonlinear ARX (NARX) model structure,

whose parameters may be identified using linear least squares methods (Cater (1997), Nelles (2001)).

The approach used in Smolders et al. (2008) is to model the linear and nonlinear dynamics separately,

the former using a state space model, and the latter using a sigmoidal neural network. The purpose

with modelling the linear dynamics separately was to be able to more easily incorporate known prop-

erties from the lumped mechanical systems they focussed on (resulting in a so-called grey-box model).

Furthermore, instead of stable inversion they used the Newton’s method to invert the model, which is

also capable of handling non-minimum phase systems and was a novel contribution of their research.

Another contribution of this research is the conversion of the NARX model formulation to a

form amenable for stable inversion, and the bounds placed on the structure of the model during system

identification to facilitate stable inversion of the model.

The alternative ILC algorithm proposed in Section 1.5.4 will also be evaluated on the quarter

vehicle road simulator.

Finally, in this research a multiple model approach is proposed to deal with inaccuracies arising

from a number of complications of the system identification process of such models. The use of this

multiple model approach to improve the accuracy of response reconstruction will also be evaluated on

the quarter vehicle road simulator.

1.7 Document Overview

In Chapter 2 the conventional stable inversion method for inverting a square, nonlinear discrete-time

system is presented. The Mann and Ishikawa iteration modifications of the stable inversion algorithm

is presented. In a series of examples the stable inversion method is demonstrated, and the advantages

of the use of low pass filters in the algorithm as well as the use of the Mann and Ishikawa iteration

schemes are presented.
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18 CHAPTER 1. INTRODUCTION

In Chapter 3 an overview of the theory of ILC of discrete-time linear systems is presented,

with special focus on model-based or inverse-based ILC compensators L, for the general deterministic

square, MIMO case, which is applicable to many laboratory situations. A general inverse based

compensator, which explicitly uses the approximate system inverse model, is proposed. An alternative

ILC algorithm is also presented together with a modification that enables it to fully match the various

properties of the conventional algorithm. An example is presented of ILC on a nonlinear system where

in a series of case studies, the ability of ILC to achieve exact tracking (i.e. converge) is demonstrated,

the ability of the alternative algorithm to sometimes converge when the conventional algorithm diverges

is demonstrated, and the conventional and alternative algorithms are compared in a case where both

diverge.

Chapter 4 presents an overview of the broader response reconstruction procedure, with a focus

on the contributions of ILC theory to the design guidelines of the ILC compensator and choice of

filters as used in response reconstruction. An overview of linear parametric system identification is

presented, followed by a presentation of nonlinear parametric system identification, with a focus on

the formulation and identification of NARX models. The procedure for the stable inversion of the

NARX model is presented. Some mechanisms of inaccuracy in the identification of NARX models are

presented, and the multiple model approach as a solution that can lead to improved model accuracy

is presented. Finally, in a series of tests on the experimental quarter vehicle road simulator the use

of nonlinear inverse-based ILC compensators is evaluated in response reconstruction, the use of the

multiple model approach is evaluated, and the use of the alternative ILC algorithm is evaluated.

Chapter 5 presents the main results and conclusions, primarily regarding the use of nonlinear

inverse models in the ILC compensator, the use of the alternative ILC algorithm, and the use of

multiple models to cover different parts of the test spectrum, and makes recommendations for future

research.
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Chapter 2

Stable Inversion of Nonlinear Systems

2.1 Introduction

This chapter presents the conventional stable inversion method for inverting a square, nonlinear,

analytical discrete-time system, of which the NARX models that are used in response reconstruction

in this research is a special case (though NARX models may be non-square). The reformulation of the

system model in a suitable form (called the normal form), the inversion of the reformulated model, and

the iterative solution of the inverse model for the bounded solution are presented separately in sections

2.3, 2.4 and 2.5 respectively. “Conventional” refers to the fact that iterative solution of the inverse

model is usually accomplished with Picard iteration (cf. sections 2.5.1 and 2.5.2). The employment

of Mann and Ishikawa iteration for the iterative solution of the inverse, discussed in sections 2.5.3

and 2.5.1 respectively, is a novel contribution of this research, with Theorems 2.2 and 2.3 being new.

Another novel contribution is the employment of a low pass filter in both Picard and Mann iteration

in Section 2.5.4.

In a series of examples the stable inversion method is demonstrated, and the advantages of using

Mann iteration over Picard iteration and the use of low pass filters in the algorithm are demonstrated.

Example 1 demonstrates the advantages of using Mann iteration and a low pass filter for a short

deterministic signal. Example 2 does the same for a random signal. Example 3 demonstrates the

use of Ishikawa iteration, then again demonstrates the advantages of using Mann iteration and low

pass filtering, and finally evaluates various strategies for the gain used in Mann iteration (including

iteration dependent and time dependent strategies).

As an introduction we first present in this section the case where the system model may be

directly inverted without requiring any system reformulation, which due to its simplicity is presented

directly in square, MIMO form.

19
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20 CHAPTER 2. STABLE INVERSION OF NONLINEAR SYSTEMS

Consider a MIMO nonlinear, discrete time state space system of the form

x(k + 1) = f(x(k), u(k)) (2.1)

y(k) = h(x(k), u(k)) , (2.2)

u(k), y(k) ∈ �m and x(k) ∈ �n, with (x◦, u◦) = ([0], [0]) an equilibrium pair of the system, i.e.

f(x◦, u◦) = x◦ and h(x◦) = [0]. f and h are analytic in their domains, i.e. f, h ∈ Cω. (C k designates

the function space of k-times continuous differentiable functions, while C∞ designates the space of

infinitely continuously differentiable functions, i.e. smooth functions. A function is in Cω if it is in

C∞ (i.e. smooth) and the Taylor series expansion of the function converges to the function over its

whole domain (Isidori, 1995, p. 471).) The presence of u(k) in h represents a direct transmission from

the input to the output. Assume the Jacobian matrix

∂y(k)

∂u(k)

∣∣∣∣
x◦,u◦

(2.3)

is non-singular at (x◦, u◦). By the inverse function theorem (Isidori, 1995, p. 471) this implies y(k) =

h(x(k), u(k)) is a diffeomorphism from around the point (x◦, u◦) (i.e. is bijective (i.e. invertible) and

both h and h̄ := h−1 are in C∞ (i.e. smooth) in a neighbourhood of x◦). Therefore h may be inverted

for the unique u(k) corresponding to a given y(k), giving the smooth mapping u(k) = h−1(x(k), y(k)),

which, when substituted into Eq. 2.1, yields the inverse system as

x(k + 1) = f(x(k), h−1(x(k), y(k))) (2.4)

:= f̄(x(k), y(k)) (2.5)

u(k) = h̄(x(k), y(k)) . (2.6)

The formulation of the inverse of MIMO nonlinear discrete-time systems when the Jacobian (Eq. 2.3)

is nonsingular is thus straight-forward. When the Jacobian of Eq. 2.3 is singular it may be possible to

convert the system to a special form, called the normal form, from which the inverse system may still

be derived. The derivation of the normal form that is presented here follows somewhat the presentation

in Castillo et al. (1991) and Monaco et al. (1987). See also Nijmeijer et al. (1990). For the equivalent

continuous time analysis see Isidori (1995). We first present the derivation of the normal form for

the single input-single output (SISO) case, which is useful for research purposes without the clutter

and extra complexity of MIMO notation. Thereafter the conversion to normal form and subsequent

inversion is presented for MIMO nonlinear discrete-time systems.

After having formulated the inverse system the process of obtaining the bounded solution for

a given known output signal is generally an iterative procedure which is essentially a fixed point

problem. The conventional approach achieves this using Picard iteration, but this algorithm can give

poor results (i.e. diverge or diverge strongly) where other iteration schemes may succeed (converge or

diverge less strongly). Here we present two alternative iteration schemes from the theory of fixed point
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2.2. THE NORMAL FORM FOR SISO SYSTEMS 21

determination, namely Mann iteration and Ishikawa iteration, both of which are known to have better

convergence properties than Picard iteration. These iteration schemes have not been discussed before

in the literature in connection with stable inversion. Here we show that they give better results for

stable inversion than Picard iteration. The focus in this study will be on Mann iteration in particular.

We also further refine these iteration methods by introducing the use of low pass filter in the algorithm

aimed at improving the convergence properties, and allowing time-varying scale/gain factors in the

algorithms.

2.2 The Normal Form for SISO Systems

Consider the SISO, nonlinear discrete-time system

x(k + 1) = f(x(k), u(k)) (2.7)

y(k) = h(x(k)) , (2.8)

with u(k), y(k) ∈ � and x(k) ∈ �n. The functions f and h are analytic in their domains (and therefore

smooth). Let (x◦, u◦) = ([0], 0) be an equilibrium pair of the system. Let the undriven state dynamics

be denoted by f0(·) = f(·, 0) and the l-times iterated composition of f0 by f l0(·). The system has local

relative degree r around the point (x◦, u◦) if (Castillo et al. 1991)

∂h ◦ f l0 ◦ f(x(k), u(k))
∂u(k)

= 0 (2.9)

for l = 0, ..., r − 2 and all x in a neighbourhood of x◦, and

∂h ◦ f r−1
0 ◦ f(x(k), u(k))

∂u(k)

∣∣∣∣∣
x◦,u◦

�= 0 . (2.10)

Assume

0 ∈ Im(h ◦ f r−1
0 ◦ f(x(k), u(k))) , (2.11)

where Im denotes the image of a mapping. From the above definition of local relative degree it follows

that
y(k + i) = h ◦ f i0(x(k)) , i = 1, . . . , r − 1

y(k + r) = h ◦ f r−1
0 ◦ f(x(k), u(k))

= h ◦ f r0 (x(k)) + S(x(k), u(k)) ,

(2.12)

around (x◦, u◦) with S(·, 0) = 0 and, from the definition of local relative degree:

∂y(k + r)

∂u(k)

∣∣∣∣
x◦,u◦

=
∂S(x(k), u(k))

∂u(k)

∣∣∣∣
x◦,u◦

�= 0 . (2.13)

This implies that y(r) is the first instant of the output affected by u(0). From the analicity of f and

h it follows that either r ≤ n or r = ∞, the latter case in which the input never affects the output.
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22 CHAPTER 2. STABLE INVERSION OF NONLINEAR SYSTEMS

We now develop a coordinate change with which to transform the above SISO system with

local relative degree r to the normal form. To this end note that, by the definition of r, the functions

ψ1(x(k)) = h(x(k))

ψ2(x(k)) = h ◦ f0(x(k))

. . .

ψr(x(k)) = h ◦ f r−1
0 (x(k))

are linearly independent at the point x◦. In order to complete a coordinate transformation when

r < n, an arbitrary set of n̂ = n− r additional smooth functions ψr+1(x(k)), . . . , ψn(x(k)) may always

be found such that the set of functions

z(k) = Ψ(x(k)) = (ψ1(x(k)), . . . , ψn(x(k)))
T

has a non-singular matrix at x◦. This implies Ψ(x(k)) is a local diffeomorphism around x◦ (i.e. is

bijective (i.e. invertible) and both Ψ and Ψ−1 are in C∞ (i.e. smooth) in a neighbourhood of x◦

(Isidori, 1995:11)), and therefore qualifies as coordinate transformation in a neighborhood of x◦ for

the system. Using the definition of local relative degree the system in the new coordinates becomes:

zi(k + 1) = ψi(x(k + 1))

= h ◦ f i−1
0 (x(k + 1))

= h ◦ f i−1
0 ◦ f(x(k), u(k))

= h ◦ f i0(x(k))

= zi+1(k) (2.14)

for i = 1, . . . , r − 1, and

zr(k + 1) = ψr(x(k + 1))

= h ◦ f r−1
0 (x(k + 1))

= h ◦ f r−1
0 ◦ f(x(k), u(k))

= h ◦ f r0 (x(k)) + S(x(k), u(k))

= h ◦ f r0 (Ψ−1(z(k))) + S(Ψ−1(z(k)), u(k))

:= α(z(k)) + β(z(k), u(k)) . (2.15)

For i = r + 1, . . . , n it follows that

zi(k + 1) = ψi(x(k + 1))

= ψi(f(x(k), u(k)))

= ψi(f(Ψ
−1(z(k)), u(k)))

:= qi−r(z(k), u(k)) . (2.16)
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2.2. THE NORMAL FORM FOR SISO SYSTEMS 23

Finally, for the output we have y(k) = h(x(k)) = ψ1(x(k)) = z1(k). The system in the new coordinates

around (x◦, u◦) is in the so-called normal form:

z1(k + 1) = z2(k)

...

zr−1(k + 1) = zr(k)

zr(k + 1) = α(z(k)) + β(z(k), u(k)) (2.17)

zr+1(k + 1) = q1(z(k), u(k)) (2.18)

...

zn(k + 1) = qn−r(z(k), u(k)) (2.19)

y(k) = z1(k) (2.20)

Partitioning the coordinate transformation as z = (ξT, ηT)T = (ξ1, . . . , ξr, η1, . . . , ηn−r)
T, the normal

form may be restated as

ξ1(k + 1) = ξ2(k)

...

ξr−1(k + 1) = ξr(k)

ξr(k + 1) = α(ξ(k), η(k)) + β(ξ(k), η(k), u(k)) (2.21)

η(k + 1) = q(ξ(k), η(k), u(k)) (2.22)

y(k) = ξ1(k) (2.23)

By the definition of local relative degree, resulting in Eq. 2.13, it follows that S, and in turn β, are

diffeomorphisms and therefore may be inverted for the unique u corresponding to a given ξr(k + 1),

giving the smooth function (from Eq. 2.21):

u(k) := γ(ξ(k), η(k), ξr(k + 1)) (2.24)

= β−1(ξ(k), η(k), ξr(k + 1)− α(ξ(k), η(k))) . (2.25)

Note that u(k) = γ(ξ(k), η(k), v(k)), with (ξ(k)T, η(k)T)T = ψ(x) and v(k) an external control signal,

defines a non-singular, nonlinear static state feedback. Substitution into Eq. 2.21 and Eq. 2.21 gives:

ξ1(k + 1) = ξ2(k)

...

ξr−1(k + 1) = ξr(k)

ξr(k + 1) = v(k)

η(k + 1) = q(ξ(k), η(k), γ(ξ(k), η(k), v(k)))
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24 CHAPTER 2. STABLE INVERSION OF NONLINEAR SYSTEMS

:= f̄(ξ(k), η(k), v(k))

y(k) = ξ1(k) (2.26)

Clearly this feedback renders the η(k) states unobservable and linearizes the observable part of the

system (the ξ states). Now, for initial condition ξ(0) = [0] and external control signal v(k) = 0 for

all k, clearly all state evolutions in Eq. 2.26 remain in H0 = {(ξ(k)T, η(k)T)T : ξ(k) = [0]}, implying

ξ(k) = [0] for all k. Such evolutions result in zero output, y(k) = ξ1(k) = 0, and are characterized by

η(k + 1) = f̄([0], η(k), 0) . (2.27)

The system dynamics constrained to H0 is called the zero output constrained dynamics, or the zero

dynamics in short, and is given by Eq. 2.27 (Monaco et al. 1987). From ξr(k + 1) = y(k + r) = v(k)

in Eq. 2.26 it is clear that the feedback u(k) = γ(ξ(k), η(k), v(k)) can be used to force the output to

v(k) = 0 in r samples. In view of this the zero dynamics (in the case of discrete time systems) can

be considered as the residual dynamics of the closed loop system when static state feedback is used

to force the output to zero. Its stability thus determines the ability to reach an equilibrium point

x◦ = [0] since, while the output (and thus ξ) is brought to zero, η will eventually decay to zero too

due to the asymptotic stability of the zero dynamics, implying x will eventually reach x◦ = [0]. A

nonlinear system is said to be minimum phase if its zero dynamics is asymptotically stable.

2.3 The Normal Form for MIMO Systems

Consider the square, MIMO nonlinear discrete-time system

x(k + 1) = f(x(k), u(k)) (2.28)

y(k) = h(x(k)) , (2.29)

with u(k) ∈ �m, x(k) ∈ �n, y(k) ∈ �m and f and h analytic in their domains. Let (x◦, u◦) = ([0], [0])

be an equilibrium pair of the system. The output yi has local relative degree ri around the point

(x◦, u◦) if
∂hi ◦ f l0 ◦ f(x(k), u(k))

∂uj(k)
= 0 (2.30)

for l = 0, . . . , ri−2, j = 1, . . . ,m, and all x in a neighbourhood of x◦, and there exists a ji ∈ {1, . . . ,m}
such that

∂hi ◦ f ri−1
0 ◦ f(x(k), u(k))
∂uji(k)

∣∣∣∣∣
x◦,u◦

�= 0 . (2.31)

Define the input-output decoupling matrix as

A(x(k), u(k)) :=

(
∂yi(k + ri)

∂uj(k)

)
i,j

=

(
∂hi ◦ f ri−1

0 ◦ f(x(k), u(k))
∂uj(k)

)
i,j

. (2.32)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2.3. THE NORMAL FORM FOR MIMO SYSTEMS 25

Assume that

rank A(x(k), u(k))|x◦,u◦ = m , (2.33)

in which case the system is said to have vector relative degree (or characteristic number) (r1, r2, ..., rm).

Assume

0 ∈ Im(hi ◦ f ri−1
0 ◦ f(x(k), u(k))) . (2.34)

In order to derive a coordinate transformation with which to transform the system to the normal form

we select the vector

ξ(k) = (ξ(1)(k)
T
, . . . , ξ(m)(k)

T
)T (2.35)

ξ(i)(k) = (ξ
(i)
1 (k), . . . , ξ(i)ri (k))

T (2.36)

= (hi(x(k)), hi ◦ f0(x(k)), . . . , hi ◦ f ri−1
0 (x(k)))T (2.37)

= (yi(k), . . . , yi(k + ri − 1))T . (2.38)

The function vector ξ(k) has |r| := ∑m
i=1 ri functions. When |r| < n, an arbitrary set of n̂ = n − |r|

additional smooth functions

η(k) = (η1(k), . . . , ηn−|r|(k))T (2.39)

may always be found such that the function vector

ψ(x(k)) = (ξT(k), ηT(k))T (2.40)

has a non-singular matrix at x◦, and therefore defines a local coordinate transformation in a neigh-

borhood of x◦ for the system. This coordinate transformation results in the following system in the

new coordinates:

ξ
(i)
1 (k + 1) = ξ

(i)
2 (k)

...

ξ
(i)
ri−1(k + 1) = ξ(i)ri (k)

ξ(i)ri (k + 1) = αi(ξ(k), η(k)) + βi(ξ(k), η(k), u(k))

i = 1, . . . ,m

η(k + 1) = q(ξ(k), η(k), u(k))

y1(k) = ξ
(1)
1 (k)

...

ym(k) = ξ
(m)
1 (k) (2.41)

This is the normal form for the MIMO system. By setting

ξ[1,m]
ri := (ξ(1)r1 , . . . , ξ

(m)
rm )T (2.42)
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26 CHAPTER 2. STABLE INVERSION OF NONLINEAR SYSTEMS

α := (α1, . . . , αm)T (2.43)

β := (β1, . . . , βm)T (2.44)

ξ
[1,m]
1 := (ξ

(1)
1 , . . . , ξ

(m)
1 )T (2.45)

the MIMO normal form may be written more compactly as

ξ[1,m]
ri (k + 1) = α(ξ(k), η(k)) + β(ξ(k), η(k), u(k)) (2.46)

η(k + 1) = q(ξ(k), η(k), u(k)) (2.47)

y(k) = ξ
[1,m]
1 (k) (2.48)

By the definition of vector relative degree (Eq. 2.33) it follows that β (Eq. 2.46) is a diffeomorphism

and may be inverted for the unique u, giving the smooth mapping

u(k) = γ(ξ(k), η(k), ξ[1,m]
ri (k + 1)) (2.49)

= β−1(ξ(k), η(k), ξ[1,m]
ri (k + 1)− α(ξ(k), η(k))) . (2.50)

The non-singular, nonlinear static state feedback u(k) = γ(ξ(k), η(k), v(k)), with (ξ(k)T, η(k)T)T =

ψ(x) and v(k) an external control signal, results in

ξ
(i)
1 (k + 1) = ξ

(i)
2 (k)

...

ξ
(i)
ri−1(k + 1) = ξ(i)ri (k)

ξ(i)ri (k + 1) = vi(k)

i = 1, . . . ,m

η(k + 1) = q(ξ(k), η(k), γ(ξ(k), η(k), v(k)))

:= f̄(ξ(k), η(k), v(k)) (2.51)

y(k) = ξ
[1,m]
1 (k) (2.52)

Proceeding exactly as in the case of SISO systems we observe that the feedback renders the η(k) states

unobservable and linearizes the observable part of the system, namely the ξ states. Furthermore, we

may define the zero output constrained dynamics as evolutions with ξ(k) = [0] for all k (and thus

v(k) = ξ
[1,m]
ri (k + 1) = [0]). The zero dynamics results in zero output y(k) = ξ

[1,m]
1 (k) = [0], and is

characterized by (from Eq. 2.51)

η(k + 1) = f̄([0], η(k), [0]) . (2.53)

The other concepts associated with the zero dynamics, namely the meaning of the zero dynamics and

the definition of minimum phase, carry over unchanged from the SISO case.

Note that when the above assumption regarding the input-output decoupling matrix fails,

namely when (cf. Eq. 2.33) rank A(x(k), u(k))|x◦,u◦ �= m, an algorithm is available for determining the
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2.4. THE INVERSE SYSTEM 27

zero dynamics (Monaco et al. 1987), however in which the analysis is not generally local in nature as

is the case here.

2.4 The Inverse System

Given a bounded desired output yd(k), k ∈ Z, the stable inversion problem is to find a desired state

trajectory xd(k) and control input ud(k) satisfying Eq. 2.28, that are in the sequence space l∞ (and

thus bounded on k ∈ Z), and that by Eq. 2.29 results in y(k) = yd(k) for the given system. (l∞

is a complete, normed vector space; see Kreyszig (1978:33, 61). A complete, normed vector space is

also called a Banach space, and therefore l∞ is a Banach space). In this study ud is also called the

desired input. The desired state trajectory and input is found as the bounded solution of the inverse

system for the given desired output. We now focus on obtaining the inverse system of the system

in the normal form (Eq. 2.46 and Eq. 2.47). The output equation of the inverse system is already

available as the function h̄ = γ, γ as defined in Eq. 2.50. With y(k) = yd(k) known, the vectors ξ(k)

and ξ
[1,m]
ri (k + 1) follow directly from their definitions. However, to determine u(k) we still need to

determine η(k). To this end we substitute h̄ = γ into Eq. 2.47, giving the n̄ dimensional system

η(k + 1) = q(ξ(k), η(k), h̄(ξ(k), η(k), ξ[1,m]
ri (k + 1))) (2.54)

:= f̄(ξ(k), η(k), ξ[1,m]
ri (k + 1)) (2.55)

:= f̄(η(k),Ξ(k)) , (2.56)

in which Ξ(k) represents ξ(k) and ξ
[1,m]
ri (k+1). The smoothness h̄ and q implies the smoothness of f̄ .

The inverse system is thus given by

η(k + 1) = f̄(η(k),Ξ(k)) (2.57)

u(k) = h̄(η(k),Ξ(k)) . (2.58)

with h̄ = γ as in Eq. 2.50. Now define

U(η(k),Ξ(k)) := f̄(η(k),Ξ(k)) −Aη(k) (2.59)

with

A :=
∂f̄(η(k),Ξ(k))

∂η(k)

∣∣∣∣∣
[0],[0]

(2.60)

A has l eigenvalues inside the unit circle and n̂ − l eigenvalues outside the unit circle. The state

dynamics, Eq. 2.57, may be restated as

η(k + 1) = Aη(k) + U(η(k),Ξ(k)) , (2.61)

which is structured like a linear system - a fact that is subsequently utilized in constructing a bounded

solution for the system. Noting the existence of a similarity transformation that transforms A into
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28 CHAPTER 2. STABLE INVERSION OF NONLINEAR SYSTEMS

the Jordan form, in the sequel we assume without loss in generality that Eq. 2.61 is already in this

form, for which

A =

⎡
⎢⎣ As [0]

[0] Au

⎤
⎥⎦ , (2.62)

with As consisting of Jordan blocks representing the l eigenvalues inside the unit circle, and Au

consisting of Jordan blocks representing the n̂ − l eigenvalues outside the unit circle. The bounded

state transition matrix for the linear matrix difference equation η(k + 1) = Aη(k) is the n̂× n̂ matrix

φ(k), k ∈ Z, given as

φ(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣ Ak

s [0]

[0] [0]

⎤
⎥⎦ , k > 0

⎡
⎢⎣ [0] [0]

[0] −Ak
u

⎤
⎥⎦ , k < 0 ,

(2.63)

with

φ(0+) =

⎡
⎢⎣ Is [0]

[0] [0]

⎤
⎥⎦

φ(0−) =

⎡
⎢⎣ [0] [0]

[0] −Iu

⎤
⎥⎦ ,

and Is and Iu the l × l and (n̂− l)× (n̂− l) identity matrices respectively. Assuming that yd(k), and

thus Ξ(k), k ∈ Z, is bounded, and that f̄(η(k),Ξ(k)) is bounded if η(k) and Ξ(k) are bounded, it

can be shown (Zeng et al. 2000) that the bounded solution η(k) of Eq. 2.61 (and thus Eq. 2.57) is

equivalent to the bounded solution η(k), k ∈ Z, of

η(k) =
k−1∑

i=−∞
φ(k − i)U(η(i − 1),Ξ(i − 1))

+ φ(0+)U(η(k − 1),Ξ(k − 1))

+
∞∑

i=k+1

φ(k − i)U(η(i − 1),Ξ(i− 1)) . (2.64)

For convenience we will designate this solution of Eq. 2.61 more compactly as

η(k) =
∞∑

i=−∞
φ(k − i)U(η(i − 1),Ξ(i − 1)) . (2.65)

Define a non-causal linear operator G (Kreyszig, 1978:49) to represent the linearly-structured system

in Eq. 2.61 as

η = GU(η,Ξ) . (2.66)
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2.5. ITERATIVE SOLUTION OF THE INVERSE 29

The procedure of obtaining the bounded solution, η(k), for Eq. 2.61, and thus Eq. 2.57, by using the

stable solution of φ(k) in Eq. 2.64 lies at the heart of stable inversion. Before discussing the calculation

of the bounded η(k), some norm definitions are in order. Proceeding as in Zeng et al. (2000), let || · ||1
and || · ||∞ denote the l1 and l∞ norms respectively on Z (Kreyszig, 1978:61). Also let

||η||∞ = max
i

||ηi||∞ , (2.67)

where i denotes the state vector element.

The function U(η(k),Ξ(k)) is said to be uniformly Lipschitz in a closed s neighbourhood of

([0],[0]) in (η,Ξ) space with positive real constants (K1,K2) if an s > 0 exists such that for all η1(k),

η2(k), Ξ1(k) and Ξ2(k), all with || · ||∞ norms ≤ s, the following local Lipschitz condition holds

uniformly ∀k ∈ Z:

|| U(η1(k),Ξ1(k))− U(η2(k),Ξ2(k))||∞ ≤ K1||η1(k)− η2(k)||∞ +K2||Ξ1(k)− Ξ2(k)||∞ . (2.68)

Furthermore, define

||φ(k)||∞ = sup{||φ(k)c(k)||∞ : ||c(k)||∞ = 1} (2.69)

||φ||1 = n̂max
i,j

||φi,j(k)||1 (2.70)

where φi,j(k) is the (i, j)-th element of φ(k). Finally we note that

||GU(η,Ξ)||∞ = ||
∞∑

i=−∞
φ(k − i)U(η(i − 1),Ξ(i − 1))||∞

≤ ||φ||1||U(η,Ξ)||∞ . (2.71)

2.5 Iterative Solution of the Inverse

2.5.1 Introduction

The bounded η(k) satisfying Eq. 2.64, which is in the form of the solution of a linear system, is

iteratively obtained. (The linear system in this case is the nonlinear system Eq. 2.57, which is a

first order nonlinear difference equation, structured as a linear system in Eq. 2.61.) This is done by

recasting Eq. 2.64 as a fixed point problem by performing iterative searching of the fixed point of

Eq. 2.66. Three of the available iteration schemes that may be used for this purpose are now listed,

namely Picard iteration, Mann iteration, and Ishikawa iteration. Consider a mapping T : B → B,

with B a non-empty, convex subset of a normed space X. Picard iteration is defined by the sequence

(η(m) : m ∈ Z), η(0) ∈ B, with

η(m+1) = T (η(m)) . (2.72)
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30 CHAPTER 2. STABLE INVERSION OF NONLINEAR SYSTEMS

Mann iteration is defined by the sequence (η(m) : m ∈ Z), η(0) ∈ B, αm ∈ (0, 1], with

η(m+1) = (1− αm)η(m) + αmT (η
(m)) . (2.73)

The usual choice for αm in Mann iteration is αm = 1/(1 +m) or αm = 1/m.

Finally, Ishikawa iteration is defined by the sequence (η(m) : m ∈ Z), η(0) ∈ B, αm ∈ (0, 1],

βm ∈ [0, 1], with

η(m+1) = (1− αm)η(m) + αmT (μ
(m))

μ(m) = (1− βm)η(m) + βmT (η
(m)) .

(2.74)

Let η designate a fixed point of Picard iteration. Then

η = lim
m→∞ η(m) = lim

m→∞ η(m+1) ,

and by taking the limit on both sides of Eq. 2.73 we get

η = (1− αm)η + αmT (η) ,

from which it is clear (after simplification of this equation) that the fixed points of Picard and Mann

iteration are equivalent. It can also be shown that a fixed point of Picard iteration is also a fixed point

of Ishikawa iteration.

Mann and Ishikawa iteration may be simplified by using constant scale factors αm = α and

βm = β. Clearly, if αn = 1 then Picard iteration is obtained from Mann iteration. Furthermore, if

βm = 0 then Mann iteration is obtained from Ishikawa iteration.

2.5.2 Picard Iteration Method

The adaptation of Eq. 2.64 for Picard iteration gives the sequence (η(m)(k) : m ∈ Z) with

η(0)(k) = [0]

η(m+1)(k) =
∑∞

i=−∞ φ(k − i)U(η(m)(i− 1),Ξ(i − 1)) .
(2.75)

This may be rewritten in operator form as (cf. Eq. 2.66)

η(m+1) = GU(η(m),Ξ) . (2.76)

If the sequence (η(m)) converges then

η(k) = lim
m→∞ η(m)(k) . (2.77)

Sufficient conditions for the convergence of the Picard iteration scheme Eq. 2.75 are now presented

from Zeng et al. (2000), with slight modification to the uniqueness aspects, because of its usefulness

of these results for subsequent theorems on Mann iteration:

Theorem 2.1: A unique solution η(k) ∈ l∞, k ∈ Z, of Eq. 2.57 exists and is obtained by the

Picard iteration of Eq. 2.75 if:
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1. f̄ is uniformly Lipschitz in an s neighbourhood of ([0],[0]) with Lipschitz constants (K1,K2),

2. ||φ||1K1 < 1,

3. Ξ(k) ∈ l∞ with ||Ξ||∞ ≤ s, and

4. (||φ||1K2||Ξ||∞/(1 − ||φ||1K1)) ≤ s.

Proof: Let k ∈ Z. Clearly η(0) ∈ l∞ and ||η(0)||∞ ≤ s. Suppose η(m) ∈ l∞ and ||η(m)||∞ ≤ s.

Then, by condition 1 and 4:

||η(m+1)(k)||∞ = ||GU(η(m),Ξ)||∞

≤ ||φ||1||U(η(m),Ξ)||∞

≤ ||φ||1(K1||η(m)||∞ +K2||Ξ||∞)

≤ ||φ||1(K1s+K2||Ξ||∞)

≤ s . (2.78)

Thus, by induction η(m) ∈ l∞ and ||η(m)||∞ ≤ s for all m. Define

H(m)(k) = η(m+1) − η(m) (2.79)

Then, by condition 1 and defining U (m) := U(η(m),Ξ):

||H(m)(k)||∞ = ||η(m+1) − η(m)||∞

= ||GU (m) −GU (m−1)||∞

= ||G(U (m) − U (m−1))||∞

≤ ||φ||1||U (m) − U (m−1)||∞

≤ ||φ||1K1||η(m) − η(m−1)||∞

= ||φ||1K1||H(m−1)(k)||∞

(2.80)

Since ||φ||1K1 < 1, by the ratio test (Bartle et al. 2000:66) the series
∑∞

m=0 ||H(m)(k)||∞ is convergent.

Hence

η(m)(k) =
m−1∑
j=1

H(j)(k) , (2.81)

k ∈ Z is a Cauchy sequence (Bartle et al. 2000:81) in l∞. Since l∞ is complete (l∞ is a Banach space),

every Cauchy sequence in l∞ converges to an element of l∞, and therefore (η(m)(k)) converges (in the

|| · ||∞ norm) to an element of l∞. Denote this limit element as η(k), k ∈ Z. Now, for a ηa, ηb ∈ l∞ it

follows that (from Condition 1)

||GU(ηa,Ξ)−GU(ηb,Ξ)||∞ ≤ ||φ||1K1||ηa − ηb||∞ , (2.82)
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implying the uniform continuity (Bartle et al. 2000:136) of GU(η,Ξ) with respect to η, from which

GU(η,Ξ) = GU( lim
m→∞ η(m),Ξ) = lim

m→∞GU(η(m),Ξ) = lim
m→∞ η(m+1) = η .

Thus η is the fixed point of GU(η,Ξ) and therefore of Eq. 2.64, which implies that η(k) is the solution

of the inverse system’s state equation, Eq. 2.57. Finally, this solution η is unique since, if ηc ∈ l∞ is

another solution, then

||η − ηc||∞ = ||GU(η,Ξ) −GU(ηc,Ξ)||∞

≤ ||φ||1K1||η − ηc||∞ .

Since ||φ||1K1 < 1 this inequality can only be satisfied if η = ηc. ♦

Condition 2 implies that Eq. 2.75 is a contraction (Kreyszig, 1978:300) between η(m) and η(m+1).

Condition 4 implies that

||φ||1(K1s+K2||Ξ||∞) ≤ s .

This is basically an extension of condition 2 for the additional variable Ξ since, when ||Ξ||∞ → 0 this

becomes ||φ||1K1 ≤ 1, which is satisfied by condition 2. Theorem 2.1 thus essentially says that if Eq.

2.64 is a contraction mapping, then Picard iteration converges to the unique fixed point. In the sequel

we show that when this is the case Mann iteration also converges. However, when ||φ||1K1 > 1, and

Eq. 2.64 is therefore not a contraction, we do not have a general condition of convergence for either

Picard, Mann or Ishikawa iteration.

The proof of Theorem 2.1 deviates somewhat from the approach of Zeng (2000), with the

uniqueness component of the proof similar to the approach taken in the proof of the Banach fixed

point theorem (contraction theorem) in Kreyszig (1978:302).

2.5.3 Mann Iteration Method

Consider again a mapping T : B → B, with B a non-empty, convex subset of a normed space X. For

the case where T : B → B is a contraction, i.e. there exists an L < 1 such that the Lipschitz condition

||Tx− Ty|| ≤ L||x− y||

is satisfied for all x, y ∈ B, the convergence of Picard, Mann and Ishikawa iteration is proved in

Rhoades et al. (2003). However, as in the case above for Eq. 2.64, when T is L-Lipschitz with L > 1

(and therefore not contractive), we do not have a general condition of convergence of either Picard,

Mann or Ishikawa iteration. Convergence conditions for Mann or Ishikawa iteration do exist for some

special cases though:
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• Chidume and Chidume (2006) give convergence conditions when T : B → B is a nonexpansive

with B a non-empty, closed, convex subset of a real Banach space X. (An operator T : B → B

is nonexpansive if ||Tx− Ty|| ≤ ||x− y|| is satisfied for all x, y ∈ B.)

• Chidume and Osilike (1999) give convergence conditions when T : X → X is a uniformly

continuous, strongly accretive operator with X an arbitrary real Banach space. (An operator

T : X → X is strongly accretive if ||x− y|| < ||x− y + s(Tx− Ty)|| is satisfied for all x, y ∈ X

and s > 0.)

• Osilike (2000) covers the more general case when T : X → X is φ-strongly accretive and X a

real, uniformly smooth Banach space.

• Chidume and Osilike (1999) give convergence conditions when T : B → B is a uniformly

continuous, strong pseudocontraction with B a nonempty closed convex bounded subset of an

arbitrary real Banach space X. (An operator T : B → B is a strong pseudocontraction if there

exists a t > 1 such that ||x − y|| ≤ ||(1 + t)(x − y) − tr(Tx − Ty)|| is satisfied for all x, y ∈ B

and r > 0.)

• Chidume and Udomene (2006) give convergence conditions when T : B → B is a uniformly

continuous pseudocontraction with B a nonempty closed convex bounded subset of an arbitrary

real Banach space X. This is however for a different type of iteration not covered in this study.

The situation that is encountered in most of the theoretical examples in the sequel is that Mann

iteration (as well as Picard iteration) diverges for a variety of values of αn, suggesting that none of

the above-mentioned special cases apply.

The following two theorems are both a result of this research. The first (Theorem 2.2) gives

sufficient conditions for the convergence of Mann iteration in stable inversion in rather empirical terms.

While of little practical use, it is used to show in the second (Theorem 2.3) that Mann iteration at least

converges under weaker conditions than Picard iteration in stable inversion. The theorems are useful

in the situation where solution of the inverse system model is not contractive and Picard iteration is

likely to diverge, because it implies that at least Mann iteration still has a chance to converge, or can

reasonably be expected to give more accurate best results prior to divergence than Picard iteration.

The adaptation of Eq. 2.65 for Mann iteration gives the sequence (η(m)(k) : m ∈ Z) with

η(0)(k) = [0]

η(m+1)(k) = (1− αm)η(m)(k) + αm
∑∞

i=−∞ φ(k − i)U(η(m)(i− 1),Ξ(i − 1)) .
(2.83)

In the sequel we will assume a constant αm = α. Eq. 2.83 may be restated in operator form (using a

constant α) as

η(m+1) = (1− α)η(m) + αGU(η(m),Ξ) (2.84)
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= (1− α)η(m) + αGU (m) , (2.85)

in which we defined U (m) := U(η(m),Ξ). The adaptation for Ishikawa iteration is done in a similar

way. Before deriving convergence conditions some definitions are in order, for which we assume k ∈ Z.

As before, define (using Eq. 2.85)

H(m) := η(m+1) − η(m) (2.86)

= (1− α)(η(m) − η(m−1)) + αG(U (m) − U (m−1))

= (1− α)H(m−1) + αH̃(m) , (2.87)

in which we defined

H̃(m) := G(U (m) − U (m−1)) . (2.88)

Taking the norm of H̃(m) we have (using Eq. 2.71 and Eq. 2.68):

||H̃(m)||∞ = ||G(U(η(m),Ξ)− U(η(m−1),Ξ))||∞

≤ ||φ||1||U(η(m),Ξ)− U(η(m−1),Ξ)||∞

≤ ||φ||1K1||η(m) − η(m−1)||∞

= ||φ||1K1||H(m−1)||∞ . (2.89)

Define s̃m ≤ ||φ||1K1 such that

||H̃(m)||∞ = s̃m||H(m−1)||∞ . (2.90)

Taking the norm of H(m) (Eq. 2.87) and defining Fm(α, η(0)) ∈ [0, 1] we get

||H(m)||∞ = Fm((1− α)||H(m−1)||∞ + α||H̃(m)||∞)

= Fm((1− α)||H(m−1)||∞ + αs̃m||H(m−1)||∞)

= sm||H(m−1)||∞ , (2.91)

in which we defined sm as

sm := Fm(1− α+ αs̃m) . (2.92)

Theorem 2.2: A solution η(k) ∈ l∞, k ∈ Z, of Eq. 2.57 exists and is obtained by the Mann

iteration of Eq. 2.83 if the following conditions are satisfied:

1. f̄ is uniformly Lipschitz in an s neighbourhood of ([0],[0]) with Lipschitz constants (K1,K2),

2. ||sm||∞ < 1,

3. Ξ(k) ∈ l∞ with ||Ξ||∞ ≤ s, and
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4. (||φ||1K2||Ξ||∞/(1 − ||φ||1K1)) ≤ s.

Proof: Let k ∈ Z. Clearly η(0) ∈ l∞ and ||η(0)||∞ ≤ s. Suppose η(m) ∈ l∞ and ||η(m)||∞ ≤ s. Taking

the norm of Eq. 2.84 we get (using conditions 1 and 4):

||η(m+1)||∞ ≤ (1− α)||η(m)||∞ + α||GU(η(m) ,Ξ)||∞

≤ (1− α)||η(m)||∞ + α||φ||1(K1||η(m)||∞ +K2||Ξ||∞)

≤ (1− α)s+ α||φ||1(K1s+K2||Ξ||∞)

≤ (1− α)s+ αs

= s . (2.93)

Thus, by induction η(m) ∈ l∞ and ||η(m)||∞ ≤ s for all m. Furthermore, from condition 2 and Eq.

2.91 it follows that ||H(m)||∞ < ||H(m−1)||∞, and by the ratio test the series
∑∞

m=0 ||H(m)(k)||∞ is

convergent. Hence

η(m)(k) =
m−1∑
j=1

H(j)(k) , (2.94)

k ∈ Z is a Cauchy sequence in l∞. Since l∞ is complete (l∞ is a Banach space), every Cauchy sequence

in l∞ converges to an element of l∞, and therefore {η(m)(k)} converges (in the || · ||∞ norm) to an

element of l∞. Denote this limit element as η(k), k ∈ Z. Now, for a ηa, ηb ∈ l∞ it follows that

||(1 − α)ηa + αGU(ηa,Ξ)− ((1− α)ηb + αGU(ηb,Ξ))||∞

= ||(1 − α)(ηa − ηb) + αG(U(ηa,Ξ)− U(ηb,Ξ))||∞

≤ (1− α)||(ηa − ηb)||∞ + α||G(U(ηa,Ξ)− U(ηb,Ξ))||∞

≤ (1− α)||ηa − ηb||∞ + α||φ||1K1||ηa − ηb||∞

= (1− α+ α||φ||1K1)||ηa − ηb||∞ ,

implying the uniform continuity of (1− α)η + αGU(η,Ξ) with respect to η, from which

(1− α)η + αGU(η,Ξ) = (1− α) lim
m→∞ η(m) + αGU( lim

m→∞ η(m),Ξ)

= lim
m→∞((1− α)η(m) + αGU(η(m),Ξ))

= lim
m→∞ η(m+1)

= η . (2.95)

Thus η is the fixed point of (1 − α)η + αGU(η,Ξ) and therefore of Eq. 2.65, which implies that η(k)

is the solution of the inverse system’s state equation, Eq. 2.57. ♦
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Note that Theorem 2.2 do not prove uniqueness as in Theorem 2.1, mostly because of the

restrictive nature of the definition of Fm. The reason for this choice of Fm (and sm) is to cover all

mechanisms contributing to the possible convergence (or less aggressive divergence) of Mann iteration

compared to Picard iteration when the latter diverges, i.e. when ||φ||1K1 ≥ 1 and Eq. 2.76 is thus not

contractive. Substituting ||φ||1K1 ≥ 1 into s̃m in sm, we observe that the resulting quantity S = 1−α+
α||φ||1K1 ≥ 1 is already smaller than ||φ||1K1, before considering that s̃m ≤ ||φ||1K1. Further noting

that F
(m)
H ≤ 1, it is clear that Condition 2, Theorem 2.2 represents a weaker convergence condition than

Condition 2, Theorem 2.1. Even if condition 2, Theorem 2.2 fails, Mann iteration may still converge

because it is a sufficient condition. If it does not converge, in view of the above considerations it is

reasonable to expect better approximate inversion results than with Picard iteration. The following

theorem formalizes these issues:

Theorem 2.3: The convergence conditions in Theorem 2.2 for Mann iteration are weaker than

the convergence conditions in Theorem 2.1 for Picard iteration since

• (1) if condition 2, Theorem 2.1 is satisfied, then the condition 2, Theorem 2.2 is also satisfied,

• (2) if condition 2, Theorem 2.1 is violated then condition 2, Theorem 2.2 may still be satisfied,

and

• (3) if condition 2, Theorem 2.2 is violated, then condition 2, Theorem 2.1 is also violated.

Proof: (1) In this case s̃m ≤ ||φ||1K1 < 1. Since α ∈ (0, 1], it follows that s̃m ≤ 1 − α + αs̃m < 1.

Noting that F
(m)
H ≤ 1 in Eq. 2.92 it follows that sm < 1, and thus ||sm||∞ < 1.

(2) In this case s̃m < ||φ||1K1 ≥ 1. If s̃m < 1, then s̃m ≤ 1 − α + αs̃m < 1 ≤ ||φ||1K1,

and thus sm < 1 ≤ ||φ||1K1, implying convergence by Condition 2. If 1 ≤ s̃m ≤ ||φ||1K1, then

1 ≤ 1 − α + αs̃m ≤ s̃m ≤ ||φ||1K1, and again sm ≤ ||φ||1K1. Therefore ||sm||∞ ≤ ||φ||1K1, and

condition 2 may still be satisfied, or have less aggressive divergence than Picard iteration.

(3) If ||sm||∞ ≥ 1, then there exists an m such that sm ≥ 1, implying by Eq. 2.92 that

1 ≤ 1− α+ αs̃m ≤ s̃m. Recalling that s̃m ≤ ||φ||1K1, it follows that ||φ||1K1 ≥ 1. ♦

2.5.4 Filter Incorporation

The results of subsequent theoretical examples show that when stable inversion diverges, incorporating

a zero phase low pass filter in the iteration my improve the accuracy of the best results prior to

divergence, or even lead to convergence. This is done here by incorporating the filter, which is

designated F in operator form, into the inverse system’s solution formula, Eq. 2.66, as follows:

η = FGU(η,Ξ) . (2.96)
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F is a linear operator representing a zero phase filter based on the causal discrete time filter F0 (i.e. in

the frequency domain F is represented by |F0(e
jωTs)|2). We can adapt Eq. 2.96 for fixed point iteration

in the same way as was done for Eq. 2.66, resulting in the following modified iteration schemes: Picard

iteration:

η(m+1) = FGU(η(m),Ξ) (2.97)

Mann iteration:

η(m+1) = (1− αm)η(m) + αmFGU(η(m),Ξ) (2.98)

Ishikawa iteration:

η(m+1) = (1− αm)η(m) + αmFGU(μ(m),Ξ)

μ(m) = (1− βm)η(m) + βmFGU(η(m),Ξ) (2.99)

Note that F above is closely associated with G, and therefore impacts the convergence conditions in

Theorem 2.1 and Theorem 2.2 in the same way that GU does. Note also that by setting

η = lim
i→∞ η(i) = lim

i→∞ η(i+1) ,

η(m+1) = F ((1− αm)η(m) + αmGU(η(m),Ξ)) , (2.100)

which we call here the Type II filtering approach. Clearly Eq. 2.100 does not have the same fixed

points as Eq. 2.97.

2.6 Example 1: Mann Iteration and Low Pass Filtering - Determin-

istic Signal

In this example the advantages of using Mann iteration and low pass filtering is demonstrated for a

short-duration deterministic signal. First, however, the ability of both Picard and Mann iteration to

converge without using a low-pass filter is demonstrated when the system is operated in a relatively

low level of nonlinearity regime.

Consider the following NARX system (Chen et al. 1989a)

y(k) = θ1u(k − 4) + θ2u(k − 5) + θ3u(k − 6) + θ4y(k − 6)

θ5u(k − 5)y(k − 4) + θ6u(k − 5)u(k − 6)y(k − 4)

+θ7u(k − 5)2u(k − 6)y(k − 5) ,

(2.101)

with

(θ1, . . . , θ7) = (0.150, −1/12, −1/6, 1/6, −4.0, 6.0, 11.0) . (2.102)
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This kind of nonlinear system may readily be obtained from nonlinear system identification methods

(Chen et al. 1989b). When converted to the nonlinear state space formulation, then to the normal

form, and finally inverted (more details on this are presented in Chapter 4), this system gives rise to

the following inverse system:

η1(k + 1) = C1(k) η1(k) + C2 η2(k) + C3(k) η1(k) η2(k) +C4(k) η1(k)
2 η2(k) + C0(k)

η2(k + 1) = η1(k)

u(k − 5) = η1(k) (2.103)

k = 1, . . . , N , with

C0(k) =
1

θ1
y(k)− θ4

θ1
y(k − 6)

C1(k) = −θ2
θ1

− θ5
θ1
y(k − 4)

C2 = −θ3
θ1

C3(k) = −θ6
θ1
y(k − 4)

C4(k) = −θ7
θ1
y(k − 5) .

A sample frequency of 250 Hz is assumed where relevant.

The desired response in question is obtained as the response of Eq. 2.111 to the following

relatively short deterministic signal, ud(k):

ūd(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 1 ≤ k ≤ 25

cu(sin(2π(k − 31)/20) + 1), 25 < k ≤ 46

0, 46 < k ≤ 146

(2.104)

ũd = F̄0.16ūd (2.105)

ud = CT ũd (2.106)

F0.16(z) =
0.02287z4 + 0.09148z3 + 0.13722z2 + 0.09148z + 0.02287

1.00z4 − 1.412z3 + 1.123z2 − 0.40807z + 0.06321
(2.107)

CT =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 1 ≤ k ≤ 12

0.5 sin(2π(k − 13)/24 − π/2) + 0.5, 12 < k ≤ 24

1, 24 < k ≤ 122

0.5 sin(2π(k − 123)/24 + π/2) + 0.5, 122 < k ≤ 134

0, 134 < k ≤ 146

(2.108)

with cu = 0.165, the second equation in operator format, and F̄ a non-causal linear operator repre-

senting the zero phase version of the low pass filter F (z) with cut frequency 40 Hz (0.16 times the
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sample frequency). CT as given by Eq. 2.108 is essentially a sinusoidal taper function. Two cases are

performed in this example, namely for cu = 0.25 (Case 1) and cu = 0.445 (Case 2). A corresponding

desired output trajectory yd(k) was generated for the two ud(k) by applying each ud(k) to the original

system (Eq. 2.101). The desired input signal and desired response signal is shown in Fig. 2.1 and Fig.

2.2 for Case 1 and Case 2 respectively.

We focus on the stable inversion of Eq. 2.101, i.e. attempting to determine the bounded solution

of Eq. 2.103 by stable inversion for the given y(k) = yd(k) for the two cases. This will be achieved

by searching the bounded solution of Eq. 2.103 by using either Picard or Mann iteration. The desired

u(k) may be obtained from the best achieved solution of η as u(k) = η1(k + 5) (cf. Eq. 2.103). The

percentage error between ud(k) and the input calculated during iteration m of stable inversion, namely

u(m)(k), is defined as:

err1(u
(m)) := 100

∑N
k=1 |u(m)(k) − ud(k)|∑N

k=1 |ud(k)|

= 100
||u(m)(k)− ud(k)||1

||ud(k)||1
. (2.109)

Similarly

err1(y
(m)) := 100 ||y(m)(k) − yd(k)||1/||yd(k)||1 . (2.110)

When stable inversion converges towards the desired input signal, the last iteration may be used for

the final results. When it diverges, the results of the “best” needs to be chosen. Since the purpose

of stable inversion (and ILC) is the determination of an unknown input signal, the percentage error

between ud(k) and the inputs calculated during successive iterations is not normally available. One

approach to circumventing this problem is to evaluate some norm of the calculated input signal for

successive iterations, and choose an iteration number based on the behavior of this norm over successive

iterations. This is referred to here as the input (or u) - based iteration selection strategy.

Another strategy for selecting the final iteration number is to calculate the output signals that

are predicted by the system for the successive, calculated input signals, evaluate the percentage error

(or other norm of the error) of each with respect to the desired output signal, and select the iteration

number giving the smallest output signal error. This is called here the output (or y) - based iteration

selection strategy, and is the one used in these examples (unless specified otherwise).

The results of stable inversion for the two cases using Picard and Mann iteration is shown in

Table 2.1. For Case 1 both approaches converge even without using a low pass filter in iteration. For

Case 2 both approaches diverge when not using a low pass filter in iteration, with Mann iteration faring

only slightly worse than Picard iteration for the input, but far better for the output. When using

a low pass filter with cut frequency at 100Hz in Case 2, Picard iteration still diverges with virtually

no improvement from the result obtained without the filter (see Fig. 2.4). Mann iteration however
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Figure 2.1: Ex. 1, Case 1: ud(t) and yd(t).

experiences an oscillatory convergence with best results that are nearly identical to the desired input

and output (see Fig. 2.5).

Table 2.1: Example 1: Results of the stable inversion using Picard and Mann iteration. M is the

iteration resulting in minmerr1(u
(m)), i.e. M = argminmerr1(u

(m)).

Case Iteration αm minmerr1(u
(m)) err1(y

(M)) M = Iter. Comment

type [%] [%] No.

1 Picard 1 0.0 0.0 34 –

1 Mann 0.05 0.0 0.0 33 –

2 Picard 1 23.9 523 1 –

2 Mann 0.2 29.3 27.7 3 –

2 Picard 1.0 23.6 503 31 100Hz L.P. Filter

2 Mann 0.1 0.9 1.0 391 100Hz L.P. Filter
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Figure 2.2: Ex. 1, Case 2: ud(t) and yd(t).
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Figure 2.3: Ex. 1, Case 2: Iteration error for calculated input signal for Picard and Mann iteration.
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Figure 2.4: Ex. 1, Case 2: Best u(i)(t) for Picard iteration.
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Figure 2.5: Ex. 1, Case 2: Best u(i)(t) for Mann iteration.
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2.7 Example 2: Mann Iteration and Low Pass Filtering - Random

Signal

In this example the advantages of using Mann iteration and low pass filtering is demonstrated for a

random signal. While the better accuracy of Mann iteration is demonstrated, it is also shown that to

achieve convergence, and therefore exact tracking, requires the use of both Mann iteration and a low

pass filter in this case.

Consider the following NARX system:

y(k) = θ1u(k − 4) + θ2u(k − 5) + θ3u(k − 6) + θ4y(k − 4)

θ5u(k − 5)y(k − 4) + θ6u(k − 5)u(k − 6)y(k − 2)

+θ7u(k − 5)2u(k − 6)y(k − 1) ,

(2.111)

with

(θ1, . . . , θ7) = (0.150, 0.50, 0.50, 1/6, −2.0, 6.0, 11.0) . (2.112)

A sample frequency of 250 Hz is assumed. A desired input trajectory, ud(k), is constructed as a random

signal with a bandwidth of at most about 50 Hz, and a corresponding desired output trajectory yd(k)

is generated by applying ud(k) to the system (Eq. 2.111). We focus on the stable inversion of this

system for the given yd(k). When converted to the nonlinear state space formulation, then to the

normal form, and finally inverted, this system gives rise to the following inverse system:

η1(k + 1) = C1(k) η1(k) + C2 η2(k) + C3(k) η1(k) η2(k) +C4(k) η1(k)
2 η2(k) + C0(k)

η2(k + 1) = η1(k)

u(k − 5) = η1(k) (2.113)

k = 1, . . . , N , with

C0(k) =
1

θ1
y(k)− θ4

θ1
y(k − 4)

C1(k) = −θ2
θ1

− θ5
θ1
y(k − 4)

C2 = −θ3
θ1

C3(k) = −θ6
θ1
y(k − 2)

C4(k) = −θ7
θ1
y(k − 1) .

The percentage error of the calculated inputs with respect to ud(k) is again calculated as in Example 1

(as well as for the calculated outputs). Stable inversion is now performed for model and desired output
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Figure 2.6: Exp. 2: ud(t) and yd(t).

as is, and thereafter with a low pass filter incorporated in the iteration. The results of stable inversion

using Picard and Mann iteration for the two situations (with and without the filter) is presented in

Table 2.2.

Table 2.2: Results of stable inversion. M is the iteration resulting in minmerr1(u
(m)), i.e. M =

argminmerr1(u
(m)).

Case Iteration αn minmerr1(u
(m)) err1(y

(M)) M = Iter. Comment

type [%] [%] no.

1 Picard 1.0 36.5 200.9 1 No filter

1 Mann 0.5 9.4 6.1 4 No filter

2 Picard 1.0 36.1 204.8 1 50Hz L.P.F.

2 Mann 0.5 0.7 0.4 100+ 50Hz L.P.F.

For stable inversion without the low pass filter both iteration schemes are divergent, but with

Mann iteration much more accurate than Picard iteration. The iteration error for the calculated input

is shown in Fig. 2.7 for the iteration schemes, and the best calculated inputs in Fig. 2.8 and Fig. 2.9

for Picard and Mann iteration respectively.

For stable inversion with a low pass filter with a cut frequency of 50 Hz Picard iteration is still

divergent, but Mann iteration is now convergent. The iteration error for the calculated input is shown

in Fig. 2.10 for the iteration schemes, and the best calculated inputs in Fig. 2.11 and Fig. 2.12 for

Picard and Mann iteration respectively.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2.7. EXAMPLE 2: MANN ITERATION AND LOW PASS FILTERING - RANDOM SIGNAL 45

10
0

10
1

10
1

10
2

10
3

Iterations

lo
g(

E
rr

)

 

 

Picard
Mann

Figure 2.7: Exp. 2 (no low pass filter): Iteration error of calculated inputs for Picard and Mann

iteration.
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Figure 2.8: Exp. 2 (no low pass filter): Best u(i) for Picard iteration.
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Figure 2.9: Exp. 2 (no low pass filter): Best u(i) for Mann iteration.
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Figure 2.10: Exp. 2 (50Hz low pass filter): Iteration error of calculated inputs for Picard and Mann

iteration.
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Figure 2.11: Exp. 2 (50Hz low pass filter): Best u(i) for Picard iteration.
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Figure 2.12: Exp. 2 (50Hz low pass filter): Best u(i) for Mann iteration.
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2.8 Example 3: Evaluation of Various Mann Iteration Gain Strate-

gies

In this example the advantages of using Mann iteration and low pass filtering is demonstrated for a ran-

dom signal, however, whereas in examples 1 and 2 a constant gain was used in Mann iteration, in this

example various strategies for the gain in Mann iteration are evaluated, including iteration-dependent

gains, and time-dependent gains. The iteration-dependent gain strategy involves a monotonically

decreasing sequence of gain values, while the time-dependent gain strategy is essentially an ampli-

tude dependent formula (intended to interrupt the process of local divergence, which is a frequent

occurrence). It is found that the most accurate results are achieved when employing a combined

iteration-dependent and time-dependent gain.

In Example 3 we focus on the stable inversion of the same system as in Example 2, namely

Eq. 2.111, however with a larger-amplitude ud(k) and corresponding yd(k) (Fig. 2.13). In view of

the polynomial nature of the system this generally implies the system is now operated in a more

nonlinear regime. Once again, the percentage error between signals is calculated as in Example 1. In

a subsequent chapter on ILC we will attempt to invert this system for this yd(k) by means of ILC.

(Recall that ILC iteratively employs stable inversion.) We will compare the success of inversion of

this system via ILC with that of the “single pass” stable inversion in this example, the latter serving

as a base line for the comparison. Three approaches to handling the gain in Mann iteration will be

tried, namely constant gains, monotonically decreasing gain sequences, and time-varying gains (either

constant or decreasing):

1. Preliminary trials using constant gains: Noting that if αm = 1 we recover Picard iteration from

Mann iteration and, in turn, if βm = 0 we recover Mann iteration from Ishikawa iteration, it

follows that Ishikawa iteration for all combinations of constant αm = α and βm = β (each

varying over regular intervals) includes both Mann iteration (also with constant αm) and Picard

iteration. A mapping for the minimum iteration error for the input signal achieved with Ishikawa

iteration for different combinations of α and β is shown in Fig. 2.14. A low pass filter of 50 Hz

was used. The curve β = 0 thus represents Mann iteration, and the point α = 1 and β = 0

represents Picard iteration. Clearly Ishikawa iteration (evaluated using a constant α and β)

does not significantly improve on the best results that may be obtained with Mann iteration

(evaluated at the same α), while Mann iteration does represent a significant improvement on

Picard iteration. For the remainder of this study we will therefore focus on Mann iteration only

during stable inversion. Noting in Fig. 2.14 that the accuracy of stable inversion is greater for

smaller values of α (and β), in the remainder of the example we therefore focus on smaller values

of α in particular. We will also employ a zero phase low pass filter with a suitable cut frequency

in stable inversion and set η
(0)
i (k) = 0 for all k and i.
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Figure 2.13: Exp. 3: ud(t) and yd(t).

2. Systematic trials using constant gains: Firstly we evaluate the stable inversion results that are

obtained using constant gains over a range of values. For this we use a 50 Hz zero phase low

pass filter, a y-based iteration selection strategy (as before), and limit the number of iterations

to at most 10000. The whole exercise is repeated for a 70 Hz and 90 Hz filter, and for no filter.

The best results are summarized in Table 2.3 (constant gain, time-independent case). The most

accurate calculated u signal has an error of 27.6%, and the corresponding output signal an error

of 26.0%.

3. Using monotonically decreasing gain sequences: Next we evaluate the stable inversion results that

are obtained using monotonically decreasing gains (αn). Chidume and Osilike [1999] suggest the

following prototype formula for αn, n ≥ 0:

αn =
1

1 + n
,

which we generalize here as follows:

αn = n0
α0 − αlim

(n+ 1)ν + (n0 − 1)
+ αlim , (2.114)

n ≥ 0 and α0 the initial value of αn (i.e. at n = 0). Using a 50 Hz zero phase low pass filter a

rough optimization exercise of the stable inversion results for αlim, n0 and ν indicates best results

are obtained for αlim between 0.0001 and 0.0005, n0 = 2 and ν = 1. In the sequel therefore we

will use

αn = 2
α0 − αlim

n+ 2
+ αlim , (2.115)
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Figure 2.14: Minimum iteration error for the input using a constant α and β, for Ishikawa iteration.

n ≥ 0. Using a 50 Hz zero phase low pass filter, a y-based iteration selection strategy, at most

10000 iterations, and various combinations of α0 and αlim, with

α0 ∈ {−1.0,−0.7,−0.5,−0.3,−0.1,−0.05}

and

αlim ∈ {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}

gives best stable inversion results as in Table 2.3 (decreasing gain, time-independent case). Note

that the most accurate calculated u signal is 16.8%, and when simulated back through the system

gives an output error of 12.4%. Clearly the use of a decreasing gain sequence gives more accurate

stable inversion results, but at the cost of larger numbers of required iterations, and therefore

takes longer. Results obtained using a 70 Hz, 90 Hz and absent zero phase low pass filter are

also shown in the table.

4. Time-varying gains: The above procedure may be repeated using a time-varying gain with the

aim of suppressing the localised radical signal growth over successive iterations that often result

in divergence of stable inversion. Various approaches exist for designing such a gain function

that is dependent on the local magnitude of a signal for a given iteration as a function of time

and on the nominal value of αn. These approaches tend to be highly empirical in nature and

are therefore not further elaborated on here. The formula that was used in this case is discussed

in Example 4, Case 4. The best results obtained with this formula are presented in Table 2.3

(for both a constant nominal αn and decreasing nominal αn, the latter once again obtained for
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various combinations of filter frequency, α0 and αlim). The best results obtained with iteration-

independent, time-varying gains represent an improvement over the results of Case 2 and Case 3.

The best results obtained with decreasing, time-varying gains represent the best stable inversion

results thus far for this system and the given desired output signal. These results demonstrate the

advantage of allowing αn to be time-varying, for both both iteration-independent and iteration-

dependent nominal values of αn.

Table 2.3: Best results of stable inversion of Eq. 2.111. M is the iteration resulting in minmerr1(u
(m)),

i.e. M = argminmerr1(u
(m)).

Iteration type Filter cut minmerr1(u
(m)) err1(u

(M)) M = Iter. Comment

αn freq. [Hz] [%] [%] no.

Iteration-independent 50 27.6 26.0 13 αn = 0.1

Time-independent 70 33.4 31.7 913 αn = 0.001

90 37.7 33.4 808 αn = 0.001

(None) 66.0 55.0 492 αn = 0.001

Iteration-dependent 50 16.8 12.4 10000 α0 = 0.05, αlim = 0.0001

Time-independent 70 29.7 25.4 3697 α0 = 0.05, αlim = 0.0001

90 35.6 27.9 3160 α0 = 0.05, αlim = 0.0001

(None) 65.7 51.7 234 α0 = 0.05, αlim = 0.0001

Iteration-independent 50 15.7 10.3 3776 αn = 0.001

Time-varying 70 19.5 14.5 12 αn = 0.5

90 26.2 16.1 423 αn = 0.01

(None) 46.4 46.6 3 αn = 0.3

Iteration-dependent 50 13.3 8.1 8327 α0 = 0.05, αlim = 0.0005

Time-varying 70 18.8 15.1 85 α0 = 0.5, αlim = 0.005

90 28.4 13.5 3244 α0 = 0.3, αlim = 0.0001

(None) 48.6 38.6 18 α0 = 0.3, αlim = 0.0005
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Chapter 3

Iterative Learning Control of Nonlinear

Systems

3.1 Introduction

Firstly a brief overview of relevant aspects of the theory of ILC of discrete-time linear systems is

presented. Here the focus will be on model-based or inverse model-based ILC compensators L for the

general deterministic square, MIMO case, which is applicable to many laboratory situations. Next,

in Section 3.3, the conventional ILC algorithm is presented for model-based or inverse model-based

ILC on nonlinear systems, again for the deterministic, square, MIMO case. A general inverse based

(GIB) ILC compensator, which explicitly uses the approximate system inverse model, is proposed,

and represents a slight modification of existing approaches for ILC in robotics literature in that it

includes a scalar scale factor for controlling the rate of convergence. A related contribution of this

research is the demonstration in Section 3.3.5 of how ILC with the GIB compensator employing the

scale factor represents a Mann iteration version of ILC without the scale factor (that corresponds to

Picard iteration).

As a novel contribution of this research an alternative ILC algorithm is presented in Section

3.4, as well as a modified version in Section 3.4 that enables it to fully match the various properties

of the conventional algorithm. Theorems 3.4 to 3.9 are modifications for the alternative and modified

alternative ILC algorithms of theorems in the literature of the conventional ILC algorithm.

An example is presented of ILC on a nonlinear system where in a series of case studies, the

ability of ILC to achieve exact tracking (i.e. converge) is demonstrated, the ability of the alternative

algorithm to sometimes converge when the conventional algorithm diverges is demonstrated, and the

conventional and alternative algorithms are compared in a case where both diverge.

52
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3.2 ILC of Linear Systems

3.2.1 Test System Formulation

Consider a m×m discrete-time, linear time-invariant (LTI) system represented in input-output format

by a linear operator T , with input signal u and output signal y

y = Tu . (3.1)

Here we assume that there exists a desired plant output signal yd(k), k = 0, . . . , N − 1, in the range of

T which we desire to track as closely as possible, yd(0) = yd(N) = [0], T is injective, i.e., there exists

a unique ud(k) such that (Silverman, 1969)

yd = Tud . (3.2)

3.2.2 ILC Algorithm

In order to achieve tracking that is as accurate as possible, we employ an iterative algorithm called

iterative learning control (ILC). ILC uses a learning capability to improve the tracking of the desired

response yd over repeated trials with the real-time system. For iteration i of the ILC procedure the

testing of the input signal, ui, gives the corresponding output yi as

y(i) = Tu(i) , (3.3)

with the achieved tracking error for iteration i given by

e(i) = yd − y(i) . (3.4)

The input signal of the next trial (iteration i + 1) is then calculated by updating the input signal of

the current trial, ui, as follows

u(i+1) = Q(u(i) + Le(i)) . (3.5)

u(i+1) is intended to result in an improvement in the tracking accuracy, i.e. a reduction in the tracking

error as given by e(i+1). L is a linear operator called here the ILC compensator, and Q is a linear

operator representing a zero-phase filter based on the causal discrete time filter Q0 (i.e. in the frequency

domain Q is represented by |Q0(e
jω)|2). Eq. 3.5 is a fundamental form of the ILC update formula,

and is an example of a first-order update formula. It is sometimes referred to as the classical update

formula. The formula is implemented off-line between trials, i.e. the calculations are not done in real

time. This also allows the calculations to be done either non-causally or in the frequency domain.

Specifying the ILC compensator L is the aim of the design problem of ILC.
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3.2.3 Convergence of ILC

For a proper design of the ILC compensator sufficient conditions may be derived for guaranteeing exact

tracking of the desired output yd, if not on the entire frequency range then at least over a limited

frequency range. To this end we construct the system formulation of ILC in the iteration domain

(called the linear iterative system formulation in Norrlöf (2002a) by combining Eq. 3.3, Eq. 3.4, and

Eq. 3.5 as follows

u(i+1) = Q(u(i) + Le(i))

= Q(u(i) + L(yd − y(i)))

= Q(u(i) + L(yd − Tu(i)))

= Q((I − LT )u(i) + Lyd) . (3.6)

A necessary and sufficient condition for convergence is that

|λl(Q((I − LT ))| < 1∀l (3.7)

for Eq. 3.6 formulated in matrix form containing all time steps in iteration i with λl(F ) the l-th

eigenvalue of F (Longman, 2000)). In the frequency domain the system formulation in the iteration

domain may be expressed as

u(i+1)(ω) = |Q0(e
jω)|2((I − L(ejω)T (ejω))u(i)(ω) + L(ejω)yd(ω)) , (3.8)

which is bounded (for bounded u) if (Norrlöf, 2002)

sup
ω∈[0,2π]

ρ (|Q0(e
jω)|2(I − L(ejω)T (ejω))) < 1 , (3.9)

with ρ(F (ejω)) = maxl |λl(F (ejω))|, and λl(F (ejω)) the l-th eigenvalue of F (ejω). While this condition

is defined for steady state conditions only, it can be shown to ensure convergence for the transient

region of every trial also, and can be regarded as a sufficient condition for convergence (Longman,

2000).

3.2.4 Limit Signals of ILC

If Eq. 3.9 is satisfied, then there exists a bounded limit signal u(∞), which is the fixed point of Eq.

3.6. Noting that

u(∞) = lim
i→∞

u(i) = lim
i→∞

u(i+1) , (3.10)

by taking the limit on both sides in Eq. 3.6 we obtain (using Eq. 3.30)

u(∞) = Q((I − LT )u(∞) + Lyd) (3.11)

= (I −Q(I − LT ))−1QLTud . (3.12)
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Clearly, if Q = 1 then u(∞) = ud, from which y(∞) = yd, implying that exact tracking is achieved, with

the fixed point independent of L. When Q �= 1 exact tracking is thus not obtained over all frequencies

up to the Nyquist frequency. In the steady state however, if Q is a low pass filter then exact tracking

will be achieved at frequencies sufficiently below the filter’s cut frequency, again independent of L

(which can be confirmed by converting Eq. 3.12 to the discrete frequency domain.)

3.2.5 Transient Behavior

A frequent observation in the ILC literature (Longman, 2000) is that while the convergence of ILC is

relatively easily ensured by proper choice of L, often using even very simple forms of L, the convergence

error of the input,

Δ(i) := u(∞) − u(i) , (3.13)

does not necessarily decay monotonously and, in fact, sometimes may grow strongly before finally

decaying. This is obviously not a desirable situation in physical test systems and it is therefore

common to seek a condition for monotone convergence.

By inserting Eq. 3.11 and Eq. 3.6 in Eq. 3.13 an iteration-domain formulation may be derived

for the input convergence error as

Δ(i+1) = u(∞) − u(i+1)

= Q(1− LT )(u(∞) − u(i))

= Q(1− LT )Δ(i) . (3.14)

A sufficient condition for monotone convergence in the Euclidean (2-) norm is then that

σmax(Q(I − LT )) < 1 (3.15)

for Eq. 3.6 formulated in matrix form containing all time steps in iteration i, and σmax the largest

singular value. Alternatively, a sufficient condition in the frequency domain for monotone convergence

is (Longman, 2002)

σmax(|Q0(e
jω)|2(I − L(ejω)T (ejω))) < 1 . (3.16)

Note that by using similar reasoning as in the derivation of Eq. 3.6 a system formulation in the

iteration domain may also be derived for the output signal as

y(i+1) = Q((1− TL)y(i) + TLyd) . (3.17)

If we define the output convergence error as

Δ(i)
y := y(∞) − y(i) , (3.18)

then the system formulation for the output convergence error is given by

Δ
(i+1)
y = Q(1− TL)Δ

(i)
y . (3.19)
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3.2.6 Model-Based ILC Compensators

Achieving monotone convergence generally requires the use of model-based ILC compensators, with

a number of types in existence that are aimed at this need, including the following designs (T̂ below

represents an approximate model of the real system of T , with T̂ (ejω) = |T̂ (ejω)| arg T̂ (ejω)):

• Contraction Mapping ILC Compensator, given in the frequency domain in SISO form as

(Jang and Longman (1994, 1996a)):

L(ejω) = c|T̂ (ejω)|(− arg T̂ (ejω)) , (3.20)

with c a real scalar. From Eq. 3.20 and Eq. 3.16 it is clear that monotone convergence is ensured

for sufficiently small values of c. The references present a time domain version of the compensator

for implementation in the time domain, especially for short duration tests (less than about four

times the slowest system time constant). Eq. 3.14 in this case becomes in the frequency domain

(for |Q0(e
jω)| = 1):

Δ(i+1)(ω) = (1− c|T̂ (ejω)|2)Δ(i)(ω) . (3.21)

Since physical systems usually have attenuation at high enough frequencies, this ILC compen-

sator can have rather slow convergence at the high frequency end due to the square in Eq. 3.21.

This problem is alleviated with the following ILC compensator.

• Phase-Cancellation ILC Compensator (Jang and Longman, 1996b) given in the frequency

domain in SISO form as

L(ejω) = c(− arg T̂ (ejω)) . (3.22)

Eq. 3.14 for this compensator becomes in the frequency domain (for |Q0(e
jω)| = 1):

Δ(i+1)(ω) = (1 − c|T (ejω)|)Δ(i)(ω) . (3.23)

Notice that now the learning does not involve the squaring of the system gain anymore. A time

domain version has been developed in (Jang and Longman, 1996b).

• The Modified Phase-Cancellation ILC Compensator, (Elci et al. 1994b) given in the

frequency domain in SISO form as

L(ejω) =

⎧⎪⎨
⎪⎩
c(− arg T̂ (ejω)) , |T̂ (ejω)| ≤ 1

(c/|T̂ (ejω)|)(− arg T̂ (ejω)) , |T̂ (ejω)| > 1 .
(3.24)

The modified phase cancellation compensator is effectively the inverse system. However, at

attenuation frequencies (usually high frequencies) where the inverse model tends to have a very

high gain, this compensator is a phase cancellation compensator with unit gain. Compared to

the inverse compensator this is advantageous because the high gain of the inverse compensator

(usually at high frequencies) is problematic for various reasons (that are shortly discussed).
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• The α Pseudoinverse-Based ILC Compensator, defined in operator form for the SISO

case as:

L =
T̂ ∗

α+ T̂ ∗T̂
, (3.25)

with T̂ ∗ the adjoint operator of T̂ . In the frequency domain this compensator is represented as

L(ejω) =
|T̂ (ejω)|

α+ |T̂ (ejω)|2
(− arg T̂ (ejω)) . (3.26)

Assume a relatively small value for α. For high-gain frequencies of T̂ the compensator approxi-

mates the modified phase cancellation and inverse compensators, but at attenuation frequencies

the value of α begins to dominate and the compensator has a lower gain than the inverse com-

pensator. The compensator is presented in Ghosh and Paden (2004) for the continuous-time

case.

• Inverse ILC Compensators, defined as (in operator form)

L = cT̂−1 , (3.27)

with scale factor c ∈ �, and in the frequency domain for the SISO case as

L(ejω) =
c

|T (ejω)| (− arg T̂ (ejω)) . (3.28)

See e.g. Phan and Longman (1989) and Lee-Glauser et al. (1996). This is also the form of

the ILC compensator in the earliest implementations of automotive service load simulation for

fatigue testing (Cryer, 1976). Early implementations employed frequency domain inverses. In

case of non-minimum phase systems, when the time-domain inverses have unstable dynamics,

the approach was to approximate the true inverse with an approximate causal inverse. This

limitation can be removed by using the non-causal stable inversion method for non-minimum

phase systems. This allows the most accurate inverse that can be identified for the test system

to be used in ILC. The advantages of using an accurate inverse as ILC compensator are the

following:

– Widest possible frequency band of convergence;

– Monotonic decay of the error of the input signal with respect to the limit input signal;

– Rapid convergence, with the possibility of convergence in one iteration when using an exact

inverse ILC compensator; and

– Good control over the rate of the convergence of the input signal (this may be achieved

using a scale factor in the inverse compensator).
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In practice the model uncertainty usually increases with frequency due to noise and/or nonlinear

effects manifesting at high frequencies in conjunction with the natural attenuation of typical

systems at high frequencies, all of which reduces accuracy of identified models at high frequencies.

The model uncertainty at high frequencies in combination with the high gain of the inverse

compensator at high frequencies can limit the bandwidth over which convergence can be achieved.

A second disadvantage of the inverse compensator is that it is limited to square systems, unlike

the pseudo-inverse compensator. The α pseudoinverse compensator is in fact a generalization

of the inverse compensator for non-square systems. In practice, however, square systems are

common.

The problem of limited convergence bandwidth of the inverse-based compensator may be alle-

viated by opting for one of the compensators with reduced gain at high frequencies (phase cancellation

or α-pseudoinverse compensators), or by incorporating a general zero-phase filter in the compensator

to attenuate the high frequency response. Opting for this approach leads to a general, inverse-based

compensator, given in operator form as

L = CL̃ ,

with C a zero-phase filter and L̃ the approximate inverse of T . In the frequency domain for the SISO

case this becomes

L(ejω) = |C0(e
jω)|2|L̃(ejω)| arg L̃(ejω) .

A similar approach may be found in Gunnarsson (1997) and Norrlöf (2002). Note that for specific

choices of C the compensator includes all the different choices of model-based compensators described

above. By the proper design of C the compensator allows the usually high magnitude of L̃ at the

high frequencies to be attenuated for the sake of robustness of convergence against model error.

To illustrate, with this compensator the frequency domain version of the condition for monotone

convergence, Eq. 3.16, yields

|||Q0(e
jω)|2(1− |C0(e

jω)|2L̃(ejω)T (ejω))||∞ < 1 .

At frequencies where the product of L̃(ejω)T (ejω)) would normally violate the condition (due to model

error in L̃), C may attenuate the product at the relevant frequencies in order to satisfy the inequality

and thus retain convergence at that frequency.

3.3 Inverse Model Based ILC of Nonlinear Systems

3.3.1 Test Formulation

Consider a m ×m discrete time, nonlinear, stable, injective test system, represented by a nonlinear

operator T with T ([0]) = [0]. The input signal for the i-th test trial is designated u(i) and the output

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



3.3. INVERSE MODEL BASED ILC OF NONLINEAR SYSTEMS 59

signal y(i), so that (with slight abuse of notation)

y(i) = T (u(i)) . (3.29)

The system is relaxed at the beginning of every test trial. We assume there exists a desired plant output

yd(k), k = 0, . . . , N − 1, yd(0) = yd(N) = [0], which we designate yd, and which we desire to track as

closely as possible. By the injectiveness of the plant there exists a unique ud(k), k = 0, . . . , N − 1,

designated ud, such that (Zeng & Hunt, 2000)

yd = T (ud) . (3.30)

3.3.2 Algorithm

The update formula in the conventional algorithm for ILC on both linear and nonlinear systems is

frequently given as (Norrlöf & Gunnarsson (2002a) and Markusson (2002))

u(i+1) = Q(u(i) + L(e(i))) , (3.31)

with

e(i) = yd − y(i) , (3.32)

y(0) = 0, and Q a zero-phase, discrete-time linear filter. While usually linear, in this study the ILC

compensator L is a generally nonlinear, discrete-time transfer operator.

When T is nonlinear, convergence to the desired ud can potentially be achieved with Eq. 3.31

even when L is the inverse of an approximate model of the system. However, the convergence generally

can not be achieved in one step, irrespective of how accurate a representation of the true inverse of

T the compensator L is. This can be rectified by slightly modifying Eq. 3.31 as follows (Markusson

(2002) and Smolders et al. (2008)):

u(i+1) = Q(u(i) + L(yd)− L(y(i))) . (3.33)

This algorithm is shown in Fig. 3.1. In case of a nonlinear T this update formula is theoretically

capable of achieving convergence in one step, but that requires that L = T−1. Note that for linear

L Eq. 3.33 reduces to the more conventional form (Eq. 3.31). In the sequel we will use the modified

update formula, Eq. 3.33, as the standard representation of the conventional approach to ILC with

nonlinear test systems, together with Eq. 3.29 and Eq. 3.30. In view of the alternative algorithm

proposed in the next section we will refer to it as the conventional algorithm.

3.3.3 Convergence

Next we focus on the convergence of the conventional algorithm. By inserting Eq. 3.29 into Eq. 3.33

the system formulation of Eq. 3.33 in the iteration domain is obtained as

u(i+1) = Q(u(i) + L(yd)− L(T (u(i)))) (3.34)
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_

T

L

L

Q

Figure 3.1: Conventional ILC algorithm on a nonlinear system T with general (possibly nonlinear) L

and (optional) zero phase filter Q.

:= T (u(i), yd) . (3.35)

Eq. 3.34 is a fixed point problem in the variable u and we may follow the standard route of using the

contraction mapping theorem in terms of the nonlinear operator T to obtain a strong condition for

both the existence and uniqueness of a solution. Markusson (2002) provides a more relaxed condition

for convergence, at the expense of having to prove the iteration is bounded and the existence of a

well-defined limit signal separately. Here we follow the approach of Markusson (2002), starting with

the boundedness of the ILC algorithm.

Theorem 3.1: If T is bounded input-bounded output (BIBO) stable in the 2-norm and αβ < 1

with α = ||Q||∞ and

β = sup
u �=0

||u− L(T (u))||2
||u||2

, (3.36)

then Eq. 3.33 is bounded input-bounded output (BIBO) stable in the 2-norm. For the proof, see

Markusson (2002). ♦

Noting that

u(∞) = lim
i→∞

u(i) = lim
i→∞

u(i+1) , (3.37)

the limit signals for Eq. 3.33 and Eq. 3.34 are defined by

u(∞) = Q(u(∞) + L(yd)− L(y(∞))) (3.38)

= Q(u(∞) + L(yd)− L(T (u(∞)))) (3.39)

If the limit signals exist, then for Q = 1 clearly L(yd) = L(y(∞)), implying y(∞) = yd since L is

injective, and in turn u(∞) = T−1(y(∞)) = T (yd) = ud by the injectiveness of T . If Q �= 1, then (from

Eq. 3.38)

u(∞) = Q(1−Q)−1(L(yd)− L(y(∞))) (3.40)
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and y(∞) = T (u(∞)). We have the following theorem for existence of the fixed points:

Theorem 3.2: If the conditions of Theorem 3.1 hold and L is BIBO stable, then for Q �= 1

Eq. 3.40 is BIBO stable in the 2-norm and u(∞) and y(∞) are well defined. If Q = 1 then u(∞) and

y(∞) are well defined, with y(∞) = yd and u(∞) = ud. The proof for the case Q = 1 follows from the

preceding discussion. For the proof of the case Q �= 1, see Markusson (2002). ♦

The iteration domain formulation for the convergence error of the input signal w.r.t. the limit

signal is then (using Eq. 3.34 and Eq. 3.39)

Δ(i+1) = u(∞) − u(i+1) (3.41)

= Q(u(∞) + L(yd)− L(T (u(∞))))−Q(u(i) + L(yd)− L(T (u(i))))

= Q(u(∞) − u(i) − (L(T (u(∞)))− L(T (u(i))))

= QΔ(i) −Q(L(T (u(∞)))− L(T (u(∞) −Δ(i)))) (3.42)

= QΔ(i) −QΦ(u(∞),Δ(i)) , (3.43)

with

Φ(u(∞),Δ(i)) := L(T (u(∞)))− L(T (u(∞) −Δ(i))) . (3.44)

We have the following sufficient condition for convergence:

Theorem 3.3: If the ILC update formula Eq. 3.33 is BIBO stable, the limit signal of Eq. 3.40

is well defined, and αγ < 1 with α = ||Q||∞ and

γ = sup
Δ �=0

||Δ − Φ(u(∞),Δ)||2
||Δ||2

, (3.45)

then ||Δ(i+1)|| < αγ||Δ(i)||, that is, the input convergence error is monotonically decreasing and the

input u(i) converges to the input limit signal. For the proof, see Markusson (2002). ♦

3.3.4 Choice of ILC Compensator

With regard to model-based designs of L, in case of square test systems L may be the (linear) inverse

of the linear model that approximates the nonlinear system (Ghosh & Paden, 2001), or in case of non-

square systems it may be the α pseudo-inverse (Ghosh & Paden, 2002) of the linear approximation.

The inverse compensator we employ here is given in operator form as

L = cCL̃ , (3.46)

with c a real scalar, C a linear, zero-phase filter, and L̃ the linear or nonlinear approximate inverse of

the generally nonlinear system T . This compensator is referred to here as the general inverse-based
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(GIB) compensator. In this study the focus is on using both linear and nonlinear inverse models in

L̃. Such models may be obtained by system identification on behavioral data of the nonlinear system

T , and inverting the resulting model. The resulting inverse is often solved in the frequency domain in

case of linear models, but may also be solved in the time domain using stable inversion in case of both

linear and nonlinear models to circumvent the instability of the inverse associated with nonminimum

phase zeros of the normal model.

Eq. 3.31 used in conjunction with the GIB compensator (Eq. 3.46) is also the form of the ILC

algorithm in response reconstruction for purposes of automotive fatigue testing. For implementations

with a linear inverse in L̃ see Cryer et al. (1976), Weal et al. (1997), Raath (1993, 1997), DeCuyper

et al. (1999), and Deckers et al. (2012). For an implementation with a nonlinear inverse in L̃ see

Smolders et al. (2008). For an aeronautical fatigue testing application using a linear inverse in L̃, see

Eksteen and Raath (2001; ignore comments about the relative accuracy of the time domain vs. the

frequency domain system identification approaches in the paper).

Substitution of the GIB compensator (Eq. 3.46) and Eq. 3.44 into Eq. 3.45 gives

γ = sup
Δ �=0

||Δ − Φ(u(∞),Δ)||2
||Δ||2

= sup
Δ �=0

||Δ − (L(T (u(∞)))− L(T (Δ + u(∞))))||2
||Δ||2

(3.47)

= sup
Δ �=0

||Δ − cC(L̃(T (u(∞)))− L̃(T (Δ + u(∞))))||2
||Δ||2

(3.48)

When the convergence condition of Theorem 3.3, namely αγ < 1 is violated, the role of a small c in

recovering convergence (at the expense of a slower rate of convergence) is clear.

For the ideal GIB compensator with L̃ = T−1 and C = 1, i.e. L = cT−1, Eq. 3.42 becomes

Δ(i+1) = QΔ(i) −Q(cT−1(T (u(∞)))− cT−1(T (u(∞) −Δ(i))))

= (1− c)QΔ(i) . (3.49)

Clearly, if c = 1, Δ(i+1) = [0], i.e. convergence is achieved in one iteration, with the limit signals as

given in Theorem 3.2. This results confirms the advantages of using an accurate inverse model in the

ILC compensator: rapid convergence, widest possible frequency band of convergence (up to Nyquist

frequency), precise control over the rate of convergence of u(i), and monotonic convergence of u(i).

3.3.5 Connections with Fixed Point Iteration Methods

The system formulation in the iteration domain for the GIB compensator (Eq. 3.46) with c = 1 and

Q = 1 becomes (from Eq. 3.34)

u(i+1) = u(i) + cCL̃(yd)− cCL̃(T (u(i))) , (3.50)
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= u(i) + CL̃(yd)−CL̃(T (u(i))) (3.51)

:= T11(u(i), yd) . (3.52)

Here we view T11(u(i), yd) as a type of baseline approach for ILC with the GIB compensator (with

c = 1) and that corresponds to the Picard fixed point iteration approach. If we now formulate a

standard Mann iteration scheme with the operator T11(u(i), yd), the result is

u(i+1) = (1− αi)u
(i) + αiT11(u(i), yd) (3.53)

= u(i) + αiCL̃(yd)− αiCL̃(T (u
(i))) (3.54)

with αi ∈ (0, 1]. Comparing Eq. 3.54 with Eq. 3.50 shows that it resembles the system formulation

for ILC with Q = 1 and with the GIB compensator with c = αi. Thus, performing ILC with the

conventional algorithm with Q = 1 and the GIB compensator with c ∈ (0, 1) essentially represents a

special case of Mann iteration (using a constant α) with the operator T11(u(i), yd). This will be true

for any ILC compensator featuring a constant scale factor. The use of the gain c ∈ (0, 1) in such

compensators thus has the same advantages for achieving convergence compared to the c = 1 case as

Mann iteration (with a constant α) has compared to Picard iteration.

Note that it is possible to form an Ishikawa iteration scheme with T11(u(i), yd) as follows:

u(i+1) = (1− αi)u
(i) + αiT11(μ(i), yd)

μ(i) = (1− βi)u
(i) + βiT11(u(i), yd) , (3.55)

with αi ∈ (0, 1] and βi ∈ [0, 1]. It can be shown that a fixed point of Picard iteration is also a

fixed point of Mann and Ishikawa iteration. Investigating the connections (if any) between Ishikawa

iteration and existing ILC iteration schemes is a subject of future research.

3.4 Alternative ILC Algorithm Using a Nonlinear Inverse Model

3.4.1 Development

We consider the same nonlinear system and associated assumptions as in Section 3.3. Towards deriving

a fundamentally different form of the ILC algorithm, we retain the Q filter in an optional capacity,

but for the moment consider the Q = 1. When the plant output converges to yd, the plant input at

the same time converges to ud. If the plant input, instead of being the parameter that is updated, is

instead directly obtained as output of the ILC compensator L, then as the plant input converges to

ud, the input to the compensator, say ỹ, will converge to a limit value ỹd so that

ud = L(ỹd) . (3.56)
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If we can formulate an update formula in the ỹ parameter, then the goal will be for ỹ to converge to

ỹd, because that will imply desired convergence of u and y to ud and yd respectively. This suggests

the possibility of an update formula on the output side of the plant instead of on the input side as

with conventional ILC (keep in mind L is essentially an inverse model of the plant). The following

algorithm follows this approach. As before

y(i) = T (u(i)) . (3.57)

We define a new parameter as input to the ILC compensator which, being an input to the ILC

compensator, is related in type to the system output and thus we use the symbol ỹ, and have

u(i) = L(ỹ(i)) . (3.58)

The new update formula is in the ỹ parameter, and is as follows:

ỹ(i+1) = Q(ỹ(i) + yd − y(i)) , (3.59)

with initial value ỹ(0) = 0. If Q = 1 in Eq 3.59 then clearly, when y(i) converges to yd, ỹ
(i) converges to

a limit value that, working back through Eq. 3.57 and Eq. 3.58 for y(i) = yd must be ỹd as defined in

Eq. 3.56. In other words, when ỹ(i) converges, by definition u and y converges to ud and yd respectively,

which is the goal of ILC. Eq. 3.57, Eq. 3.58 and Eq. 3.59 represent an alternative algorithm for ILC

on nonlinear systems when using a nonlinear ILC compensator. The essential difference is that the

algorithm updates (a version of) the plant output instead of the plant input. The algorithm is shown

in Fig. 3.2. Note that in the next section we will modify this algorithm and in the process ostensibly

improve it, thus rendering the version presented here essentially a stepping stone or preliminary

version. However, the research presented here focuses on implementing and evaluating the algorithm

as presented in this section, with the evaluation of the modified version that is presented in the next

section being the subject of future research.

3.4.2 Relationship with Conventional Algorithm

The system formulation in the iteration domain of the system input for the alternative algorithm is

given as (combining Eq. 3.57, Eq. 3.58 and Eq. 3.59):

u(i+1) = L(ỹ(i+1))

= L(Q(ỹ(i) + yd − y(i))) (3.60)

= L(Q(L−1(u(i)) + yd − T (u(i)))) . (3.61)

Clearly, when L is linear then Eq. 3.61 reduces to Eq. 3.34. In other words, if L is linear then the

alternative algorithm is equivalent to the conventional algorithm, even if the system T is nonlinear.
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Figure 3.2: Alternative algorithm for ILC on a nonlinear system T using a nonlinear L.

The alternative algorithm is therefore only an option when we employ a nonlinear inverse, and thus for

ILC on nonlinear plants only. Note further that by a simple modification the input system formulation

for the conventional algorithm (Eq. 3.34) may be restated as (using Eq. 3.58)

u(i+1) = Q(u(i) + L(yd)− L(y(i))) (3.62)

= Q(L(ỹ(i)) + L(yd)− L(y(i))) (3.63)

Comparison of Eq. 3.60 for Q = 1, i.e.

u(i+1) = L(ỹ(i) + yd − y(i)) ,

and Eq. 3.63 for Q = 1, i.e.

u(i+1) = L(ỹ(i)) + L(yd)− L(y(i)) ,

shows that the essential difference between the two ILC algorithms is that in the alternative algorithm

L operates on all three entities together, instead of separately as in the conventional algorithm. This

comes at no apparent cost as the alternative algorithm is still capable of achieving convergence in one

iteration when L = T−1 (as will be shortly shown).

3.4.3 Convergence

By inserting Eq. 3.57 and Eq. 3.58 into Eq. 3.59 the system formulation in the iteration domain for ỹ

is derived as

ỹ(i+1) = Q(ỹ(i) + yd − T (L(ỹ(i)))) . (3.64)

To analyze convergence we follow exactly the same approach as for the conventional algorithm, starting

with the boundedness of the ILC algorithm.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



66 CHAPTER 3. ITERATIVE LEARNING CONTROL OF NONLINEAR SYSTEMS

Theorem 3.4: If T is BIBO stable in the 2-norm and αβ̄0 < 1 with α = ||Q||∞ and

β̄0 = sup
ỹ �=0

||ỹ − T (L(ỹ))||2
||ỹ||2

, (3.65)

then Eq. 3.59 is BIBO stable in the 2-norm. The proof is similar to that of Theorem 3.1. ♦

Next we focus on the existence of convergence points for the fixed point iteration of Eq. 3.64,

i.e. the of limit signals. Noting Eq. 3.37 the limit signals for Eq. 3.59 and Eq. 3.64 are respectively

ỹ(∞) = Q(ỹ(∞) + yd − y(∞)) (3.66)

= Q(ỹ(∞) + yd − T (L(ỹ(∞)))) (3.67)

If the limit signals exist, then for Q = 1 clearly from Eq. 3.67 yd = T (L(ỹ(∞))), implying ỹ(∞) =

L−1(T−1(yd)) = L−1(ud) = ỹd (cf. Eq. 3.56), in turn u(∞) = L(ỹ(∞)) = L(ỹd) = ud, and from Eq. 3.57

y(∞) = T (u(∞)) = T (ud) = yd. If Q �= 1, then from Eq. 3.66

ỹ(∞) = Q(1−Q)−1(yd − y(∞)) , (3.68)

u(∞) = L(ỹ(∞)), and y(∞) = T (u(∞)). We have the following theorem:

Theorem 3.5: If the conditions of Theorem 3.4 hold and L is BIBO stable, then for Q �= 1

Eq. 3.68 is BIBO stable in the 2-norm and ỹ(∞), u(∞) and y(∞) are well defined. If Q = 1 then ỹ(∞),

u(∞) and y(∞) are well defined, with ỹ(∞) = ỹd, u
(∞) = ud and with y(∞) = yd. The proof for the case

Q = 1 follows from the preceding discussion. The proof for case Q �= 1 is similar to Theorem 3.2. ♦

The iteration domain formulation for the convergence error of ỹ w.r.t. the limit signal ỹ(∞) is

then (using Eq. 3.64 and Eq. 3.67)

Δ̃
(i+1)
0 = ỹ(∞) − ỹ(i+1) (3.69)

= Q(ỹ(∞) + yd − T (L(ỹ(∞))))−Q(ỹ(i) + yd − T (L(ỹ(i))))

= Q(ỹ(∞) − ỹ(i) − (T (L(ỹ(∞)))− T (L(ỹ(i))))

= QΔ̃
(i)
0 −Q(T (L(ỹ(∞)))− T (L(ỹ(∞) − Δ̃

(i)
0 ))) (3.70)

= QΔ̃
(i)
0 −QΦ̃0(ỹ

(∞), Δ̃
(i)
0 ) , (3.71)

with

Φ̃0(ỹ
(∞), Δ̃

(i)
0 ) := T (L(ỹ(∞)))− T (L(ỹ(∞) − Δ̃

(i)
0 )) . (3.72)

We have the following sufficient condition for convergence:

Theorem 3.6: If the ILC update formula Eq. 3.59 is BIBO stable, the limit signal of Eq. 3.67

is well defined, and αγ̃0 < 1 with α = ||Q||∞ and

γ̃0 = sup
Δ̃0 �=0

||Δ̃0 − Φ̃0(ỹ
(∞), Δ̃0)||2

||Δ̃0||2
, (3.73)
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then ||Δ̃(i+1)
0 || < αγ̃0||Δ̃(i)

0 ||, that is, the convergence error of ỹ(i) w.r.t. ỹ(∞) is monotonically decreasing

and ỹ(i) converges to ỹ(∞). The proof is similar to Theorem 3.3. ♦

Substitution of the GIB compensator (Eq. 3.46) and Eq. 3.72 into Eq. 3.73, gives

γ̃0 = sup
Δ̃0 �=0

||Δ̃0 − (T (L(ỹ(∞)))− T (L(ỹ(∞) − Δ̃0))||2
||Δ̃0||2

(3.74)

= sup
Δ̃0 �=0

||Δ̃0 − (T (cCL̃(ỹ(∞)))− T (cCL̃(ỹ(∞) − Δ̃0)))||2
||Δ̃0||2

(3.75)

When the convergence condition of Theorem 3.6, namely αγ̃0 < 1 is violated, the role of a small c in

recovering convergence (at the expense of a slower rate of convergence) is clear, however its effect is

not as obvious as in the case of the conventional algorithm.

For the ideal GIB compensator with L̃ = T−1 and C = 1, i.e. L = cT−1, Eq. 3.70 becomes

Δ̃
(i+1)
0 = QΔ̃

(i)
0 −Q(T (cT−1(ỹ(∞)))− T (cT−1(ỹ(∞) − Δ̃

(i)
0 ))) . (3.76)

Clearly we do not have the same kind of simplification resulting from use of the ideal GIB compensator

as we have for the conventional ILC algorithm (cf. Eq. 3.49). However, if c = 1 we again find Δ̃
(i+1)
0 = 0,

i.e. convergence is still achieved in one iteration, with the limit signals as given in Theorem 3.5. While

c will be effective in setting the rate of general convergence, the rate of convergence can not be as

precisely controlled as for the conventional case due to the nonlinearity of T in Eq. 3.76.

3.4.4 Connection with Fixed Point Iteration Methods

The system formulation in the iteration domain for the GIB compensator (Eq. 3.46) with c = 1, and

Q = 1 becomes (from Eq. 3.64)

ỹ(i+1) = ỹ(i) + yd − T (cCL̃(ỹ(i))) , (3.77)

= ỹ(i) + yd − T (CL̃(ỹ(i))) (3.78)

:= T̄ 0
11(ỹ

(i), yd) . (3.79)

If we now formulate a standard Mann iteration scheme with the operator T̄ 0
11(ỹ

(i), yd), we get

ỹ(i+1) = (1− αi)ỹ
(i) + αiT̄ 0

11(ỹ
(i), yd) (3.80)

= (1− αi)ỹ
(i) + αi(ỹ

(i) + yd − T (CL̃(ỹ(i)))) (3.81)

= ỹ(i) + αiyd − αiT (CL̃(ỹ
(i))) (3.82)

with αi ∈ (0, 1]. Comparing Eq. 3.82 with Eq. 3.77 shows that performing ILC with Q = 1, with

the alternative algorithm, and with the GIB compensator with c ∈ (0, 1) is not equivalent to Mann

iteration with the operator T̄ 0
11(ỹ

(i), yd) for the special case of using a constant αi = c. This will be

true for the preliminary algorithm for any ILC compensator featuring a constant scale factor.
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3.5 Modified Alternative ILC Algorithm Using a Nonlinear Inverse

In this section we modify the alternative algorithm presented in Section 3.3 in order to obtain it in a

way that again allows precise control over the rate of convergence, straight-forward adjustment of the

convergence condition (γ) to ensure convergence, and equivalence between use of the GIB compensator

for c ∈ (0, 1) and Mann iteration with the operator obtained when using c = 1 in the GIB compensator.

We consider the same nonlinear system and associated assumptions as in Section 3.3, and again retain

the Q filter in an optional capacity. Define ỹd such that

ud = L̃(ỹd) , (3.83)

with L̃ as defined in the GIB compensator (Eq. 3.46), i.e. as representing the inverse model per se.

Furthermore,

y(i) = T (u(i)) , (3.84)

and

u(i) = L̃(ỹ(i)) . (3.85)

We modify the update formula of the preliminary alternative algorithm (Eq. 3.59) as follows:

ỹ(i+1) = Q(ỹ(i) + cC(yd − y(i))) , (3.86)

with initial value ỹ(0) = [0], and c and C as in the GIB compensator. When Q = 1 clearly, when y(i)

converges to yd in Eq. 3.86, ỹ(i) and u(i) converges to ỹd and ud respectively. Eq. 3.84, Eq. 3.85 and

Eq. 3.86 represent a modified form of the alternative algorithm for ILC on nonlinear systems when

using a nonlinear ILC compensator.

3.5.1 Relationship with Conventional Algorithm

The system formulation in the iteration domain of the system input for the modified alternative

algorithm is given as (combining Eq. 3.84, Eq. 3.85 and Eq. 3.86):

u(i+1) = L̃(ỹ(i+1))

= L̃(Q(ỹ(i) + cC(yd − y(i)))) (3.87)

= L̃(Q(L̃−1(u(i)) + cC(yd − T (u(i))))) . (3.88)

When L̃ is linear Eq. 3.88 reduces to Eq. 3.34 and the modified alternative algorithm becomes equiv-

alent to the conventional algorithm (even for nonlinear T ), and is therefore only an option when we

employ a nonlinear inverse.
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Figure 3.3: Modified version of the alternative algorithm for ILC on a nonlinear system T with a

nonlinear L.

Note further that by a simple modification the input system formulation for the conventional

algorithm (Eq. 3.34) may be restated as (using Eq. 3.85)

u(i+1) = Q(u(i) + L(yd)− L(y(i))) (3.89)

= Q(L̃(ỹ(i)) + cC(L̃(yd)− L̃(y(i)))) (3.90)

Comparison of Eq. 3.87 for Q = 1, i.e.

u(i+1) = L̃(ỹ(i) + cC(yd − y(i))) ,

and Eq. 3.90 for Q = 1, i.e.

u(i+1) = L̃(ỹ(i)) + cC(L̃(yd)− L̃(y(i)))

shows that the essential difference between the two ILC algorithms is not just that in the modified

alternative algorithm L̃ operates on all three entities together, instead of separately as in the conven-

tional algorithm, but is also the location of the cC factor w.r.t. L̃ (i.e. “inside” L̃ vs. “outside” L̃).

This comes at no apparent cost as the alternative algorithm is still capable of achieving convergence

in one iteration when L = T−1 (as will be shortly shown).

3.5.2 Convergence

By inserting Eq. 3.84 and Eq. 3.85 into Eq. 3.86 the system formulation in the iteration domain for ỹ

is derived as

ỹ(i+1) = Q(ỹ(i) + cC(yd − T (L̃(ỹ(i))))) . (3.91)
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To analyze convergence we again follow the same approach as for the conventional algorithm.

Theorem 3.7: If T is BIBO stable in the 2-norm and αβ̄ < 1 with α = ||Q||∞ and

β̄ = sup
ỹ �=0

||ỹ − cCT (L̃(ỹ))||2
||ỹ||2

, (3.92)

then Eq. 3.86 is BIBO stable in the 2-norm. The proof is similar to that of Theorem 3.1. ♦

Noting Eq. 3.37 the limit signals for Eq. 3.86 and Eq. 3.91 are defined by respectively

ỹ(∞) = Q(ỹ(∞) + cC(yd − y(∞))) (3.93)

= Q(ỹ(∞) + cC(yd − T (L̃(ỹ(∞))))) . (3.94)

If the limit signals exist, then for Q = 1 clearly from Eq. 3.94 yd = T (L̃(ỹ(∞))), implying ỹ(∞) =

L̃−1(T−1(yd)) = L̃−1(ud) = ỹd (cf. Eq. 3.83), in turn u(∞) = L̃(ỹ(∞)) = L̃(ỹd) = ud, and y(∞) =

T (u(∞)) = T (ud) = yd. If Q �= 1, then from Eq. 3.93

ỹ(∞) = cCQ(1−Q)−1(yd − y(∞)) , (3.95)

u(∞) = L(ỹ(∞)), and y(∞) = T (u(∞)). We have the following theorem:

Theorem 3.8: If the conditions of Theorem 3.7 hold and L is BIBO stable, then for Q �= 1

Eq. 3.95 is BIBO stable in the 2-norm and ỹ(∞), u(∞) and y(∞) well defined. If Q = 1 then ỹ(∞), u(∞)

and y(∞) are well defined, with ỹ(∞) = ỹd, u
(∞) = ud and with y(∞) = yd. The proof for the case

Q = 1 follows from the preceding discussion. The proof for case Q �= 1 is similar to Theorem 3.2. ♦

The iteration domain formulation for the convergence error of the input signal w.r.t. the limit

signal is then (using Eq. 3.91 and Eq. 3.94)

Δ̃(i+1) = ỹ(∞) − ỹ(i+1) (3.96)

= Q(ỹ(∞) + cC(yd − T (L̃(ỹ(∞))))) −Q(ỹ(i) + cC(yd − T (L̃(ỹ(i)))))

= Q(ỹ(∞) − ỹ(i) − cC(T (L̃(ỹ(∞)))− T (L̃(ỹ(i))))

= QΔ̃(i) −QcC(T (L̃(ỹ(∞)))− T (L̃(ỹ(∞) − Δ̃(i)))) (3.97)

= QΔ̃(i) −QΦ̃(ỹ(∞), Δ̃(i)) , (3.98)

with

Φ̃(ỹ(∞), Δ̃(i)) := cC(T (L̃(ỹ(∞)))− T (L̃(ỹ(∞) − Δ̃(i)))) . (3.99)

We have the following sufficient condition for convergence:
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Theorem 3.9: If the ILC update formula Eq. 3.86 is BIBO stable, the limit signal of Eq. 3.94

is well defined, and αγ̃ < 1 with α = ||Q||∞ and

γ̃ = sup
Δ̃ �=0

||Δ̃− Φ̃(ỹ(∞), Δ̃)||2
||Δ̃||2

, (3.100)

then ||Δ̃(i+1)|| < αγ̃||Δ̃(i)||, that is, the convergence error of ỹ(i) w.r.t. ỹ(∞) is monotonically decreasing

and ỹ(i) converges to ỹ(∞). The proof is similar to Theorem 3.3. ♦

Substituting Eq. 3.99 into Eq. 3.100, giving

γ̃ = sup
Δ̃ �=0

||Δ̃− cC(T (L̃(ỹ(∞)))− T (L̃(ỹ(∞) − Δ̃)))||2
||Δ̃||2

. (3.101)

When the convergence condition of Theorem 3.9, namely αγ < 1 is violated, the role of a small c in

recovering convergence (at the expense of a slower rate of convergence) is again clear.

For the ideal inverse compensator L̃ = T−1 and C = 1 Eq. 3.97 becomes

Δ̃(i+1) = QΔ̃(i) −Qc(T (T−1(ỹ(∞)))− T (T−1(ỹ(∞) − Δ̃(i))))

= Q(1− c)Δ̃(i) . (3.102)

Clearly we again have the same kind of simplification resulting from use of the ideal GIB compensator

as we have for the conventional ILC algorithm (cf. Eq. 3.49). Furthermore, if c = 1 we again find

Δ̃(i+1) = [0], i.e. convergence is still achieved in one iteration, with the limit signals as given in

Theorem 3.8. In addition the rate of convergence can be precisely controlled as in the conventional

case.

3.5.3 Connection with Fixed Point Iteration Methods

The system formulation in the iteration domain for Q = 1 becomes (from Eq. 3.91)

ỹ(i+1) = ỹ(i) + cC(yd − T (L̃(ỹ(i)))) , (3.103)

and for c = 1 the system formulation then becomes

ỹ(i+1) = ỹ(i) + C(yd − T (L̃(ỹ(i)))) (3.104)

:= T̄11(ỹ(i), yd) . (3.105)

If we now formulate a standard Mann iteration scheme with the operator T̄11(ỹ(i), yd), we get

ỹ(i+1) = (1− αi)ỹ
(i) + αiT̄11(ỹ(i), yd)

= (1− αi)ỹ
(i) + αi(ỹ

(i) + C(yd − T (L̃(ỹ(i)))))

= ỹ(i) + αiC(yd − T (L̃(ỹ(i)))) (3.106)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



72 CHAPTER 3. ITERATIVE LEARNING CONTROL OF NONLINEAR SYSTEMS

with αi ∈ (0, 1]. Comparing Eq. 3.106 with Eq. 3.103 shows that performing ILC with the modified

alternative algorithm with Q = 1 and c ∈ (0, 1) is equivalent to Mann iteration with the operator

T̄11(ỹ(i), yd) (for the special case of a constant α).

3.6 Example 4

In this example we perform ILC on the same system used in Example 2, Chapter 2, namely Eq. 2.111.

In ILC the dynamics of the physical system is usually not exactly known, though the test engineer

usually will have an approximate model of the system. When inverted, the resulting approximate

inverse model may be used in inverse model-based ILC on the system. While an exact model for the

“system” in this case is available, in order to simulate a practical situation (where the exact system

model is rarely known) we here also do ILC with the inverse of an approximate model. Such an

approximate model may be obtained by system identification on input-output data for the system,

and may be either linear or nonlinear.

In Case 1 we demonstrate the convergence of the conventional and alternative ILC algorithms

for a short-duration deterministic signal (the same desired input ud and output yd that was used in

Example 2). In Case 2 we present an example where the alternative ILC algorithm converges while

the conventional algorithm diverges for a random signal.

In Case 3 to Case 4 we use the same desired input ud and output yd that was used in Example

3. In Case 3 we perform ILC using the inverse of a linear approximate model. In Case 4 we perform

ILC using the inverse of a nonlinear approximate model, and compare the results with those of Case 3.

Both the linear and nonlinear models of Cases 3 and 4 are obtained from system identification. In each

case we will also compare the results of ILC using the conventional and alternative ILC algorithms.

3.6.1 Case 1: ILC for a Deterministic Desired Signal

This case demonstrates the ability of the alternative and conventional ILC algorithms to converge

for a short-duration deterministic signal (the same desired input ud and output yd that was used in

Example 2). The test system is represented by Eq. 2.111

y(k) = θ1u(k − 4) + θ2u(k − 5) + θ3u(k − 6) + θ4y(k − 4)

θ5u(k − 5)y(k − 4) + θ6u(k − 5)u(k − 6)y(k − 2)

+θ7u(k − 5)2u(k − 6)y(k − 1) ,

with

(θ1, . . . , θ7) = (0.150, 0.50, 0.50, 1/6, −2.0, 6.0, 11.0) .
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The desired response in question is obtained as the response of Eq. 2.111 to the following relatively

short deterministic signal, ud(k):

ūd(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 1 ≤ k ≤ 25

cu(sin(2π(k − 31)/20) + 1), 25 < k ≤ 46

0, 46 < k ≤ 146

(3.107)

ũd = F̄0.16ūd (3.108)

ud = CT ũd (3.109)

F0.16(z) =
0.02287z4 + 0.09148z3 + 0.13722z2 + 0.09148z + 0.02287

1.00z4 − 1.412z3 + 1.123z2 − 0.40807z + 0.06321
(3.110)

CT =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 1 ≤ k ≤ 12

0.5 sin(2π(k − 13)/24 − π/2) + 0.5, 12 < k ≤ 24

1, 24 < k ≤ 122

0.5 sin(2π(k − 123)/24 + π/2) + 0.5, 122 < k ≤ 134

0, 134 < k ≤ 146

(3.111)

with cu = 0.165, the second equation in operator format, and F̄ a non-causal linear operator represent-

ing the zero phase version of the low pass filter F (z) with cut frequency 40 Hz (0.16 times the sample

frequency). CT as given by Eq. 3.111 is essentially a sinusoidal taper function. The desired input

signal and desired response signal is shown in Fig. 3.4. For purposes of obtaining the inverse-model

based ILC compensator we obtained the following approximate (nonlinear) NARX system model by

system identification:

y(k) = −0.076129u(t − 2) + 0.21444u(t − 3)− 0.0040361u(t − 10)

+2.6585y(t − 1)− 3.6336y(t − 2) + 3.2178y(t − 3)

−1.8455y(t − 4) + 0.56977y(t − 5)− 0.039669y(t − 7)

+0.12012u(k − 3)u(k − 4)− 0.12388u(k − 3)u(k − 10)

−0.12629u(k − 3)y(k − 2) .

(3.112)

Due to the nonlinearity of the model, stable inversion of the model is iterative. A gain of 0.1 was used in

stable inversion. For ILC a zero-phase low pass ILC filter Q with cut frequency of 40 Hz was used and

a ILC gain of c = 0.3 was used. The results for both the conventional and alternative ILC algorithms

are presented in Fig. 3.5 and Fig. 3.6. Clearly both the conventional and alternative ILC algorithms

converge with the alternative algorithm converging more rapidly and to lower convergence errors

values. The minimum convergence error values in these figures correspond to virtually imperceptible

differences between the desired and achieved input and response signals. Note that sinusoidal tapering

(of duration 0.03 sec) was applied during stable inversion during the alternative ILC algorithm to

suppress build-up of spurious high frequency oscillations at the start of the signal.
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Figure 3.4: Case 1: Desired input ud(t) and output yd(t) data.
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Figure 3.5: Case 1: Convergence error of the input with respect to the desired input for the conven-

tional and alternative ILC algorithms.
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Figure 3.6: Case 1: Convergence error of the output with respect to the desired response for the

conventional and alternative ILC algorithms.
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Figure 3.7: Case 2: Desired input ud(t) and response yd(t) data.

3.6.2 Case 2: ILC for a Random Desired Signal

In this case ILC is performed on Eq. 2.111 using the low-level random input and corresponding output

signal of Example 2, shown in Fig. 3.7, to demonstrate the ability of the alternative ILC algorithm to

converge when the conventional algorithm diverges in this particular case. For the ILC compensator

the stable inverse of Eq. 3.112 was again used, this time with a stable inversion gain of 0.2. An ILC

gain of c = 0.4 was used and a zero-phase low pass ILC filter Q was used with a cut frequency 50 Hz.

The results for both the conventional and alternative ILC algorithms are presented in Fig. 3.8

and Fig. 3.9, which shows that the conventional ILC algorithm diverges and alternative ILC algorithm

converges. The best achieved response for the conventional ILC algorithm is shown in Fig. 3.10, while

that of the alternative ILC algorithm is visually virtually indistinguishable from the desired response

signal and therefore not shown. The approach here (as in Case 1) of using the Q filter and not the C

filter to achieve the low pass frequency cut off for ILC follows from the fact that that is the intention

of the Q filter in normal practise, whereas the C filter is rather intended to be a shaping filter used to

increase the bandwidth of convergence.
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Figure 3.8: Case 2: Convergence error of the input with respect to the conventional and alternative

ILC algorithms.
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Figure 3.9: Case 2: Convergence error of the output with respect to the conventional and alternative

ILC algorithms.
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Figure 3.10: Case 2: Most accurate achieved output (response) for the conventional ILC algorithm

(only a section is shown).

3.6.3 Case 3: ILC Using an Approximate Linear Inverse Model

In this case ILC is performed on Eq. 2.111 using the higher-level random input and corresponding

output signal of Example 3, shown in Fig. 3.11. The purpose is to demonstrate the success of ILC

using a linear inverse model-based ILC compensator. This doesn’t imply that ILC converges, in fact it

diverges in this case, and from a purely ILC point of view that will be a drawback, with the approach

to remedy this to tailor the Q and C filters and the c gain to obtain the largest bandwidth possible

that still gives convergence of ILC. However, in response reconstruction for structural integrity testing

we do not have a purely ILC point of view that requires convergence at all costs, but rather we use

ILC for a limited number of iterations to obtain the most accurate results possible over the largest

bandwidth possible (or over a fixed, given bandwidth), with ILC terminated as soon as the most

accurate results have been obtained. Thus, in response reconstruction it is tolerable if ILC diverges,

as long as the results obtained before divergence is sufficiently accurate accurate for the purposes of

the test.

A zero-phase, low pass ILC filter Q is employed, with the cut frequency of Q matching the

values of the stable inversion filter in Example 3, namely respectively 50, 70, 90 Hz, including the

option of using no filter. While there is very little signal strength in the desired response above 50 Hz,

it is very much the higher frequencies (50 Hz and above) that are responsible for divergence of ILC in

this case. It is therefore sensible to investigate the use of low pass ILC Q filters with cut frequencies of

50 Hz and higher to investigate the reduction in the severity of divergence while not severely reducing

the signal frequency range.
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In order to systematically evaluate ILC for the various values of Q a range of ILC gains will be

used for every value of Q, including both iteration independent and iteration dependent gains, from

which the best results may subsequently be selected. The formula for the iteration dependent gain

c(i) is given as

c(i) = 2
c0 − clim
i+ 1

+ clim , (3.113)

noting that c(0) = c0.

For purposes of the inverse-model based ILC compensator a linear inverse model was obtained

by performing system identification, and inverting the resulting model via stable inversion. Stable

inversion of a linear model is accomplished in a single pass, and is exact (in the sense that the

calculated input signal, when passed back through the model, recovers the given output signal used

in the inversion). The following (linear) ARX model of the system was obtained (prior to inversion):

y(k) = −0.0020592u(k − 4) + 0.53042u(k − 5)− 0.33295u(k − 6) + 2.9341y(k − 1)

−4.5461y(k − 2) + 4.6988y(k − 3)− 3.3494y(k − 4) + 1.542y(k − 5)

−0.34179y(k − 6) .

(3.114)

The best results of ILC on Eq. 2.111 using the stable inverse of this model is presented in Table 3.1.

Note that when the ILC compensator L is linear, the conventional and alternative ILC algorithms are

equivalent, for which reason we do not distinguish between the two approaches here. The best input

signal that was obtained had an error of 18.0%, and the corresponding output, that is obtained by

passing the input back through Eq. 2.111 (i.e. the system), had an error of 9.9%. These results do

not represent an improvement on the results of stable inversion Eq. 2.111 for the same desired input

and output signal in Example 3, for which we get lower input and output errors of 13.3% and 8.1%

respectively. It is found that in all cases except when using no Q filter the best ILC results were

obtained using iteration-dependent ILC gains.

Table 3.1: Case 3: Best results of ILC. M is the iteration resulting in minmerr1(u
(m)), i.e. M =

argminmerr1(u
(m)).

Q-filter cut minmerr1(u
(m)) err1(y

(M)) M = Iter. Comment

freq. [Hz] [%] [%] no.

50 18.0 9.9 432 c0 = 0.1; clim = .01 (it. var.)

70 21.4 11.4 86 c0 = 0.3; clim = .025 (it. var.)

90 41.1 29.4 78 c0 = 0.1; clim = .01 (it. var.)

None 52.3 75.0 1 c = 1 for u; c = 0.4 for y
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Figure 3.11: Case 3: Desired input ud(t) and output yd(t) data.
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Figure 3.12: Case 3: Best results for ILC input signal u(i)(t).
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Figure 3.13: Case 3: Best results for ILC output signal y(i)(t).
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3.6.4 Case 4: ILC Using an Approximate Nonlinear Inverse Model

In this case, as in Case 3, ILC is performed on Eq. 2.111 using the higher level random input and

corresponding output signal of Example 3, shown in Fig. 3.11. However, for the inverse model-based

ILC compensator we use here a nonlinear inverse model for purposes of comparison of the results

with those of Case 3. For the nonlinear inverse model the following approximate NARX model was

obtained by system identification:

y(k) = 0.23043u(t − 4) + 0.10461u(t − 6)− 0.037279u(t − 10)

+1.7955y(t − 1)− 2.0957y(t − 2) + 1.7392y(t − 3)

−0.88389y(t − 4) + 0.24564y(t − 5)

−0.29621u(k − 5)y(k − 5)− 1.2585u(k − 5)3

+7.2289u(k − 5)2y(k − 1)− 9.2816u(k − 5)u(k − 6)y(k − 2)

+4.4206u(k − 5)u(k − 7)y(k − 3)− 0.30189u(k − 10)y(k − 2)y(k − 9)

+0.041543y(k − 1)2y(k − 10) .

(3.115)

The model has been obtained using the methods discussed in the next chapter and is not particularly

optimized, but is representative of the type of nonlinear models obtained in response reconstruction

using automated methods for searching for best models over a range of model structures.

Since the model is nonlinear, stable inversion of the model is iterative. Since the iteration of

stable inversion in this case is not convergent, regardless of the choice of gain in stable inversion,

a rough optimization was done to determine the choice of gain in stable inversion that gives stable

inversion results comparable to the best possible results. This was deemed sufficient as the desired

input is usually not available in practise to determine inversion accuracy, systematic optimization

can be an intensive exercise and often doesn’t result in significant gains over the results obtained with

rough optimization, and ILC does not critically depend on the accuracy of the inverse but is capable of

iterative correction in the calculation of the input, i.e. is somewhat robust against inaccuracies in the

accuracy of the inverse model (within limits of course). The number of iterations in stable inversion

was limited to about 1000 iterations (and more where more was needed before divergence occurred).

ILC is evaluated in this case for various combinations of ILC low pass filters Q and ILC gains

c, and for both the conventional and alternative ILC algorithms. The best results obtained using the

conventional ILC algorithm is shown in Table 3.2, and for the alternative ILC algorithm in Table 3.3.

Negative ILC gains c in Table 3.2 and Table 3.3 implies that an iteration dependent ILC gain was

used with c0 = |c| and clim = 0.005 (cf. Eq. 3.113). Only time-independent ILC gains were used.

Results are presented for both iteration-independent and iteration dependent stable inversion

gains, indicated as stable inversion cases A and B respectively, and for time-independent and time

dependent stable inversion gains, indicated as stable inversion cases 1 and 2 respectively. Refer to Table

3.4. The formula for iteration dependent stable inversion gains used here is the same as for iteration
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dependent ILC gains, namely Eq. 3.113, with c0 = cSI and clim = clim,SI. The time-dependent stable

inversion gain for stable inversion iteration j and input channel i, designated C
(j)
v,i (k), was calculated

here by the following formula

C̄
(j)
v,i (k) = 1/(800|u(j−1)(k)− u(j)(k)|+ 1)

C̃
(j)
v,i = F̄0.083C̄

(j)
v,i − 1

C
(j)
v,i (k) =

C̃
(j)
v,i (k)

maxk |C̃(j)
v,i (k)|

+ 1

(3.116)

with the second formula in operator format, and F̄0.083 a zero-phase low pass filter (with cut frequency

0.083 of the sample frequency). The C
(j)
v,i (k) values were suitably delayed for application to the columns

of η(j)(k). C
(j)
v,i (k) is multiplied with the time-independent stable inversion gain for iteration j, which

for the iteration dependent case is designated c
(j)
SI (and is governed by the cSI and clim,SI values - cf.

Table 3.4).

It is found that both the conventional and alternative ILC algorithms are consistently divergent.

The best results were achieved with the alternative ILC algorithm using a 50 Hz low pass filter in Q

for stable inversion case B2 (cf. Table 3.3), and was much more accurate than the results achieved

with the conventional ILC algorithm.

None of the results in Table 3.2 and Table 3.3 represent an improvement over the results

achieved in Case 3 with the linear inverse model for the same mathematical system and desired input

and output signals. However, when we repeat the conventional and alternative ILC algorithm tests

for the case of a 50 Hz low pass filter in Q and a 50 Hz low pass filter in stable inversion (see the

results presented in Table 3.5), we do observe an improvement over the results in Case 3. The best

results are consistently obtained with the time-dependent gain approach in stable inversion, with the

conventional ILC algorithm giving slightly better results than the alternative algorithm.
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Table 3.2: Case 4: Best ILC results with the conventional ILC algorithm. A negative ILC gain c

implies an iteration-dependent ILC gain with c0 = |c| and clim = 0.005 (cf. Eq. 3.113). A positive c

implies an iteration-independent ILC gain. “SI” refers to stable inversion. “It.” for u and y are the

iteration numbers m corresponding to minmerr1(u
(m)) and minmerr1(y

(m)) respectively.

Q-filter Input - u Output - y SI

cut freq c It. minmerr1(u
(m)) c It. minmerr1(y

(m)) Case

[Hz] [%] [%]

50 -0.3 48 52.06 -0.3 48 58.31 A1

70 -0.1 156 62.07 -0.1 156 68.77 A1

90 1.0 1 73.68 0.1 12 80.86 A1

None -0.1 101 72.87 -0.1 101 73.88 A1

50 -0.1 199 50.22 -0.1 199 58.18 A2

70 1.0 1 65.01 -0.1 69 78.64 A2

90 0.05 25 65.08 0.05 25 72.70 A2

None 1.0 1 71.97 -0.1 41 78.68 A2

50 -0.1 411 48.81 -0.1 411 50.31 B1

70 -0.1 129 68.68 -0.1 129 75.03 B1

90 1.0 1 74.31 0.1 11 82.42 B1

None 1.0 1 75.86 -0.1 60 80.42 B1

50 1.0 1 46.26 -0.1 100 57.51 B2

70 1.0 1 47.22 -0.1 70 59.88 B2

90 1.0 1 48.83 -0.1 56 63.79 B2

None 1.0 1 50.52 -0.7 1 67.45 B2
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Table 3.3: Case 4: Best ILC results with the alternative ILC algorithm. A negative ILC gain c implies

an iteration-dependent ILC gain with c0 = |c| and clim = 0.005 (cf. Eq. 3.113). A positive c implies

an iteration-independent ILC gain. “SI” refers to stable inversion. “It.” for u and y are the iteration

numbers m corresponding to minmerr1(u
(m)) and minmerr1(y

(m)) respectively.

Q-filter Input - u Output - y SI

cut freq c It. minmerr1(u
(m)) c It. minmerr1(y

(m)) Case

[Hz] [%] [%]

50 -0.1 360 63.45 -0.3 118 69.44 A1

70 1.0 1 75.36 1.0 1 81.06 A1

90 -0.1 154 72.16 -0.1 154 78.28 A1

None -0.7 1 74.86 -0.7 1 81.07 A1

50 -0.1 238 38.69 -0.1 238 48.87 A2

70 -0.1 238 59.72 -0.1 238 66.94 A2

90 -0.1 129 59.66 -0.1 129 68.85 A2

None 0.4 1 66.50 0.4 1 74.69 A2

50 -0.1 383 59.11 -0.1 383 66.13 B1

70 -0.1 246 73.70 -0.7 2 78.98 B1

90 -0.7 2 76.23 -0.1 27 81.07 B1

None 0.1 8 75.17 0.1 8 80.63 B1

50 -0.3 100 21.70 -0.3 100 15.94 B2

70 -0.1 171 34.05 -0.1 171 32.68 B2

90 0.4 1 71.75 0.4 1 78.83 B2

None 1.0 1 50.52 0.05 10 74.63 B2

Table 3.4: Case 4: Stable inversion case details. “SI” refers to stable inversion.

Case Iteration cSI clim,SI Time

dependent? dependent?

A1 No 0.01 – No

A2 No 0.03 – Yes

B1 Yes 0.10 0.005 No

B2 Yes 0.30 0.100 Yes
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Table 3.5: Case 4: Best ILC results with the conventional and alternative ILC algorithms when

employing a 50 Hz low pass filter in stable inversion. A negative ILC gain c implies an iteration-

dependent ILC gain with c0 = |c| and clim = 0.005 (cf. Eq. 3.113). A positive c implies an iteration-

independent ILC gain. “SI” refers to stable inversion. “It.” for u and y are the iteration numbers m

corresponding to minmerr1(u
(m)) and minmerr1(y

(m)) respectively.

Q-filter Input - u Output - y SI ILC

cut freq c It. minmerr1(u
(m)) c It. minmerr1(y

(m)) Case algorithm

[Hz] [%] [%]

50 1.0 1 15.82 1.0 1 16.78 A1 Conv.

50 1.0 1 13.47 -0.3 753 7.40 A2 Conv.

50 1.0 1 15.64 1.0 1 20.22 B1 Conv.

50 1.0 1 14.47 -0.3 240 9.95 B2 Conv.

50 1.0 1 14.88 -1.0 9 10.37 A1 Alt.

50 1.0 2 14.42 -1.0 9 8.46 A2 Alt.

50 1.0 1 14.78 0.4 4 17.29 B1 Alt.

50 1.0 2 15.50 -1.0 8 8.65 B2 Alt.
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Figure 3.14: Case 4: Best results for ILC input signal u(i).
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Figure 3.15: Case 4: Best results for ILC output signal y(i).
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Chapter 4

Application of ILC in Response

Reconstruction

4.1 Introduction

Response reconstruction is a laboratory test method that uses ILC to achieve realistic simulation of

field-measured responses in engineering structures, usually for purposes of fatigue testing, but also for

other purposes, such as shock testing or vibration testing. When performed on full-scale structures, for

example in automotive applications, these are good examples of when we want ILC convergence that

is monotone but not too rapid in order to detect dangerous and/or damaging excitation signals before

they become too severe. Actuators are applied to the test specimen in such a way as to be able to mimic

in-service loading of the structure without excessively impacting the structural dynamic properties of

the test specimen. Electro-hydraulic actuators are each typically equipped with a real-time control

system to control either actuator load or displacement. The system outputs/responses from the point

of view of the response reconstruction procedure are typically strain or acceleration sensors located

on the test specimen, where they are appropriately positioned to be able to measure unique specimen

responses to unique load inputs. As such the responses may be quite remote from the actuators.

The goal of response reconstruction is the accurate reconstruction of desired response histories in the

sensors on the test specimen, and is achieved through ILC on the closed-loop test system. The desired

responses are usually actual in-service responses measured in the field with the test specimen under

normal operation. Replicating the desired responses in the laboratory test specimen by reconstructing

them with ILC effectively simulates the normal service conditions under which the desired responses

were measured in the field. For more detail regarding the response reconstruction procedure, see

sections 1.1 and 1.6.

In the previous chapter (1) the use of nonlinear inverse models of the test system in the general

88
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4.2. RESPONSE RECONSTRUCTION PROCEDURE 89

inverse-based ILC compensator instead of linear inverse models, which is the standard approach, was

motivated, and (2) an alternative ILC algorithm was developed for use specifically when employing

nonlinear inverse models, but that differs fundamentally from the conventional algorithm. In this

chapter we focus on the use of NARX models in particular, obtained by system identification, to

source the nonlinear inverse model proposed for use in ILC from. To this end we examine the system

identification of NARX models, as well as their inversion, and additionally (3) motivate and develop

a multiple-model approach in system identification to improve the accuracy of the nonlinear inverse

model in the ILC compensator. Finally we implement all three above-mentioned developments in

response reconstruction in a quarter vehicle road simulator case.

4.2 Response Reconstruction Procedure

4.2.1 Test System Definition

With the aim of ILC being the calculation of the system inputs that replicate the desired responses

(as close as possible), clearly ILC is essentially an inversion procedure; inverting the entire test system

between the control system inputs and the responses on the test specimen for the given desired response

signals. The requirement that this experimental inversion procedure of the test system produces a

unique input signal for a desired output is the requirement of left invertibility of the test system. This

will be satisfied by the same condition as left invertibility of analytical inversion of systems, namely

that the system be injective. Amongst others this requires that the test system has as many output

channels as input channels (or more output channels). In this research we assume there are the same

number of output and input channels (i.e. that the system is ”square”). The presentation in this

chapter is limited to the SISO case, however, for the sake of brevity and clarity.

The architecture of the real-time control system in discrete-time form is shown in Fig. 4.1.

Here Gs(q) represents the generally nonlinear dynamics between the actuator signals sent from the

controller to the actuator, and the remote responses measured on the specimen. Ga(q) represents the

generally nonlinear dynamics between the same actuator signals and the actuator responses, which

are also the feedback signals of the real time control system. Gc(q) represents the (usually) linear

controller dynamics.

The nonlinearity ofGs(q) may involve actuators, joints, specimen dynamics, and sensors. A very

general model formulation for nonlinear systems is the nonlinear state-space form. We are primarily

concerned with the mapping of the closed-loop system between system inputs u and the specimen

outputs y which for the i-th iteration may be given in nonlinear state-space form as

x(i)(k + 1) = f(x(i)(k), u(i)(k))

y(i)(k) = h(x(i)(k)) ,
(4.1)
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Figure 4.1: Block diagram of the SISO discrete-time control system.

Let T be a nonlinear operator representing the generally nonlinear, closed-loop system between u and

y. Thus, for the i-th iteration,

y(i) = T (u(i)) . (4.2)

Assuming the existence of a given desired plant output, yd(k), it follows there exists a unique input

signal ud(k) corresponding to yd(k) such that

yd = T (ud) . (4.3)

In response reconstruction we use ILC to determine the control system input u(k) that causes the

specimen response y(k) to exactly track the desired specimen response, yd(k), or track it as closely as

possible.

4.2.2 System Identification

In past implementations of ILC in response reconstruction the inverse models employed in the ILC

compensator have been almost exclusively linear. The two main approaches to obtain a linear model

of the closed-loop control system T are non-parametric frequency-domain system identification and

parametric time-domain system identification. In most earlier and in many current implementations

of ILC in response reconstruction, the non-parametric frequency domain approach is used. Non-

parametric models are essentially functions of frequency or time, and are more flexible than parametric

models in the sense that no predetermined model structure is imposed (Nelles, 2001). Two basic

approaches exist (Ljung, 1999):

• Fourier transform based identification: The simplest approach is (for the SISO case) to obtain

T̂ as:

T̂(np)(e
jω) =

y(ω)

u(ω)
,
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with y(ω) and u(ω) the discrete Fourier transform (DFT) of u(k) and y(k) respectively. Ljung

(1999) refers to this as the empirical transfer function estimate (ETFE). It is called “empirical”

because of the “rawness” of the estimate, meaning that the only constraint applied in its cal-

culation is the linearity of the system. Whenever u(ω) = 0 at some frequencies the EFTE is

considered as undefined at those frequencies. The use of this approach in ILC is discussed by

Longman (2000).

For the general case when the input is non-periodic the ETFE is considered a crude estimate

as the estimate at different frequencies are uncorrelated and erratic. Let N be the length of the

input signal. While the estimate is asymptotically (as N → ∞) unbiased, the variance doesn’t

decrease with increasing N . However, in case of a periodic input the ETFE is unbiased and the

variance decays proportional to 1/N .

• PSD-based identification: Letting φu(ω) be the power spectral density (PSD) of the input u, and

φyu(ω) be the output-input cross spectral density, for the SISO case T̂ may also be obtained as

T̂(np)(e
jω) =

φyu(ω)

φu(ω)
.

For the MIMO case the corresponding formulation is T̂(np)(e
jω) = φyu(ω)φ

−1
u (ω) . Special care

needs to be taken to prevent correlation among the channels of u, which may render φu(ω)

singular (De Cuyper et al. 1999). This type of transfer function estimate involves a trade-off

between bias and variance based on the choice of windowing parameters, as result of which

general statements about the dependence of variance on N alone are not possible. Note that in

case of a closed-loop control system this type of transfer function estimate will give erroneous

results if applied in the straight-forward way.

If the model is intended to be used as an inverse-model based ILC compensator, then for the desirable

properties of the ILC algorithm associated with such a compensator to be achieved, the model needs

to be as accurate as possible from the point of view of achieving desirable transient behavior of ILC

and maximising the width of the convergent frequency band in ILC. In case of nonlinear systems

this means a nonlinear model is sought. Nonlinear models have in recent years been developed as

extensions of parametric time domain models with both their formulation and identification relatively

straight-forward in many cases. For this reason the focus in this research is on parametric time

domain models, specifically with regard to nonlinear extensions of the approach, and their use in ILC

for response reconstruction testing purposes. The identification of parametric time domain models is

discussed in Section 4.3 for the linear case and in Section 4.4 for the nonlinear case.

The remainder of the algorithm focuses on the design of elements required in the implementation

of the ILC procedure, including the nonlinear inverse model L̃, the scalar c, and the filters C and Q.
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4.2.3 Design of L̃ (inversion of T̂ )

The system model T̂ is left inverted to obtain the ILC compensator as L̃ = T̂−1. In the case of a

linear MIMO non-parametric model T̂(np)(e
jω) (i.e. an FRF) the model can simply be inverted via

matrix inversion at every frequency for which the model is defined, assuming the matrix is full rank.

Inversion of parametric (time domain) models T̂(p) in the general case of non-minimum phase systems

is less straight-forward, and requires stable inversion, i.e. the use of the dichotomic partitioning of the

dynamics of the inverse into the stable and unstable part.

4.2.4 Design of C

The SISO zero-phase filter C is designed to achieve local adjustments (i.e. focused on specific frequency

bands) in the convergence criterion of ILC (see for example Eq. 3.48) to locally (where needed) increase

robustness against model uncertainty, typically at high frequencies.

4.2.5 Choice of c

The real scalar c is selected to set the rate of convergence (cf. Eq. 3.49). When the inverse model

in L̃ is exact, c will be exactly the rate of convergence; but when the inverse is approximate, c will

approximate the rate of convergence. c can also be used separate from C as a frequency-independent

scale factor to achieve frequency-independent adjustments in the convergence criterion of ILC (cf.

Eq. 3.48) to increase robustness of convergence against model uncertainty, but at the cost of a global

reduction in the rate of convergence.

4.2.6 Design of Q

The SISO zero-phase filter Q is designed as a low pass filter ideally with cut frequency to limit the

ILC test bandwidth to the range of frequencies over which convergence occurs. Noting the role of Q

in Theorem 3.3 clearly Q plays a major role in achieving convergence, but at the expense of inducing

bias in the limit signals (c.f. Theorem 3.2). In practice in fatigue testing the need is usually to do

response reconstruction on a bandwidth wider than that over which convergence occurs, and Q is

usually selected as a low-pass filter with cut frequency being the required upper test frequency band

rather than the convergent frequency band of ILC.
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4.2.7 ILC

Either the conventional or alternative ILC algorithms may be employed in response reconstruction,

with the conventional algorithm given as

y(i) = T (u(i)) ,

u(i+1) = Q(u(i) + L(yd)− L(y(i))) , (4.4)

with L = cCL̃, which is able to achieve convergence in one step when L̃ = T̂−1. When using a very

accurate inverse model L̃ in the ILC compensator L, this algorithm provides precise control of the

rate of convergence of the input, u(i), with monotone convergence of the input, and convergence over

the entire frequency band up to the Nyquist frequency. Due to the desirability of these properties,

and the fact that the more accurate the inverse model is, the more these properties will be achieved,

when an accurate inverse model is not available we still aim for the most accurate inverse possible.

For this reason there is much merit in future research into successful identification and inversion of

more general nonlinear models than currently being implemented in response reconstruction.

The alternative ILC algorithm as presented Section 3.4 is given by

u(i) = L(ỹ(i)) ,

y(i) = T (u(i)) ,

ỹ(i+1) = Q(ỹ(i) + yd − y(i)) .

with with L = cCL̃.

The modified alternative ILC algorithm as presented Section 3.5 is given by

u(i) = L̃(ỹ(i)) ,

y(i) = T (u(i)) ,

ỹ(i+1) = Q(ỹ(i) + cC(yd − y(i))) .

When using an accurate inverse in the ILC compensator (L̃), this algorithm again provides precise

control of the rate of convergence of ỹ(i), with monotone convergence of ỹ(i), and convergence over the

entire frequency band up to the Nyquist frequency. The more accurate the inverse model is, the more

accurately these properties will be realized in ILC.

For the purposes of response reconstruction learning is allowed to continue until either conver-

gence has occurred, or an optimum value of the norm of the tracking error has been reached, after

which the u(i) and corresponding y(i) for the final iteration is saved, and ILC is terminated. In case

of ILC for fatigue testing purposes the rest of the fatigue test consist of merely replaying the final
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achieved u(i) to achieve the desired service load reconstruction that was the purpose for which ILC

was employed in the first place. Fatigue analysis may be done on the final achieved y(i) in order to

evaluate the achieved test acceleration compared to the desired test acceleration and determine the

required test duration to a simulate a given normal-usage life for the structure.

4.2.8 Discussion

When a relatively accurate model of the real-time test system is available and the ILC compensator

is a simple, non-model based design, the ILC convergence criterion can be evaluated to determine

the approximate frequency range for convergence a priori. In case of inverse model-based ILC, the

most accurate approach is to employ the inverse of the most accurate available model in the ILC

compensator, as result of which the ILC convergence criterion will automatically predict convergence

up to the Nyquist frequency and will not be of value in evaluating convergence of ILC with the inverse

model (due to the inverse model being the exact inverse of the model used to represent the system

in the convergence criterion). In this study we do not try to salvage the convergence criterion for

inverse-based ILC and thus discard attempts at quantitative evaluation of the convergence criterion,

instead using it as a qualitative guide.

The design of L̃, C, c, and Q as outlined above follows largely after Norrlöf and Gunnarsson

(2002b), with the difference that here C is aimed purely at robustness of convergence of ILC, with the

rate of convergence adjusted with c instead, while in Norrlöf and Gunnarsson (2002b) a single filter

(1−H) handles both robustness of convergence and rate of convergence. Thus, by generalising from

the linear case, at frequencies that we have high model certainty of L̃ = T̂−1, there is little need to

scale C down to improve the robustness of convergence, and we will let C = 1 at these frequencies.

Afterwards, having shaped C aimed at robustness of convergence only, c is then chosen to represent

the rate of convergence, keeping in mind that it will also contribute to robustness of convergence,

but in a frequency insensitive way. This approach incorporates both the (1−H) filter of Norrlöf and

Gunnarsson (2002b) in C, and the constant, scalar iteration gain in c as used in traditional fatigue

testing implementations of ILC, and thus represents a slightly more general framework for ILC than

either of the approaches.

Designing C a priori may be difficult (either for lack of an accurate model of T or the difficulty

of analyzing the convergence criterion), as result of which in the fatigue testing field frequently C = 1 is

used and c is set to a rather low value, such as 0.1 - 0.2, to maximise the chances of convergence over the

desired frequency band and reduce the rate of convergence. As a consequence it is a frequent outcome

to, instead of having a given bandwidth over which convergence occurs and have the test limited

to that bandwidth (using the Q filter), find that either the high frequencies or another frequency

band diverges within the desired test bandwidth and for iterative learning to be stopped at some

optimum value of a norm of the achieved tracking error before the divergent frequency band results
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in increase of the tracking error. (This is also the approach followed in the demonstration example,

Section 4.7). Future work in the employment of ILC in response reconstruction may benefit from use

of the C filter, especially to curb the early onset of divergence at high frequencies due to the typical

inaccuracy of model estimates T̂ at these frequencies. In ILC on nonlinear systems the potential is

limited however, as even when not inputting any energy at higher frequencies, nonlinear effects such

as free-play in joints or frequent contact between components of the specimen may result in strong

response at higher frequencies and ultimately cause divergence at higher frequencies.

4.3 Linear Parametric System Identification in the Time Domain

4.3.1 The ARX Model

System identification is performed to obtain a parametric time-domain model which may subsequently

be inverted to give an inverse system model for use in ILC. During system identification the entire test

system is modeled, including digital to analogue (D-A) conversion, actuator control system, hydraulic

delivery system, actuators, specimen, response measurement system, and analogue to digital (A-D)

conversion. The approach taken here is to use the input-output formulation, also called external

dynamics formulation, which includes the well-known ARX model. The alternative approach is the

state-space formulation, also called the internal dynamics formulation. In a non-parametric sense the

test system with input signal u(k) and output y(k) may be modeled as a linear time-invariant system

in input-output format as (Nelles (2001), Ljung (1999)):

y(k) = G(q)u(k) , (4.5)

with

G(q) =
∞∑
i=0

giq
−i , (4.6)

gi ∈ R, and q the backward shift operator, i.e. q−nu(k) = u(k − n). Eq. 4.5 represents the discrete-

time version of the convolution integral using the impulse response when employing a zero order hold

(ZOH) during sampling of the input. The sequence {g(k)} represents the discrete-time version of the

impulse response. This deterministic model may be generalized by the addition of a stochastic noise

component v(k), with

v(k) = H(q)e(k) , (4.7)

to obtain a basic model formulation

y(k) = G(q)u(k) +H(q)e(k) , (4.8)

in which e(k) is white noise and H(q) a linear filter, allowing any noise spectrum for v(k) to be

modeled. When the deterministic part of the model (G(q)u(k)) is discarded, the model is referred to
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as a time series. When H(q) consists only of a numerator it is referred to as a moving average (MA)

model, and when it consists only of a denominator it is referred to as an autoregressive (AR) model.

When it has both it is referred to as an ARMA model. Adding an exogenous input u(k) to the AR

time series model gives the so-called ARX model (auto-regressive model with exogenous input):

y(k) =
B(q)

A(q)
u(k) +

1

A(q)
e(k) , (4.9)

with

A(q) = 1 +
na∑
i=1

aiq
−i ∈ �[q] , (4.10)

B(q) =
nb∑
i=0

biq
−i ∈ �[q] . (4.11)

Comparison with Eq. 4.8 shows that G(q) = B(q)/A(q) and H(q) = 1/A(q). The ARX model is an

example of an equation error, referring to the fact that we may write

A(q)y(k) = B(q)u(k) + e(k) ,

where e enters the equation rather than being added to the output, and implying that the denominator

is common to both the deterministic and stochastic parts. When the noise model (i.e. H(q)) is

independent of the dynamics of the deterministic part (i.e. G(q)), the model is of the output error

class of models. The most basic of these is itself called the output error (OE) model, and is given as

y(k) =
B(q)

F (q)
u(k) + e(k) , (4.12)

where e is added to the output. When F (q) = 1 we get the finite impulse response (FIR) model

y(k) = B(q)u(k) + e(k) . (4.13)

When G(q) represents the impulse response, as in Eq. 4.6, it is essentially non-parametric (with an

infinite number of elements); however in the ARX model G(q) has been parameterized as a rational

function with a finite number of parameters. The ARX and related models thus represent parametric

models.

4.3.2 Model Simulation

Predicting the unknown output for a given input using the model is referred to as model simulation.

Since the noise term is unknown beforehand the model is used in the deterministic sense only in

simulation. In this case the ARX model becomes

ŷ(k) =
B(q)

A(q)
u(k) , (4.14)
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where ŷ(k) is the simulated model output. Expanding A(q) and B(q) in Eq. 4.14 and multiplying

with the denominator gives

ŷ(k) + a1ŷ(k − 1) + . . .+ ana ŷ(k − na) =

b0u(k) + b1u(k − 1) + . . .+ bnb
u(k − nb) .

(4.15)

Solving for the current ŷ(k) in terms of u and past values of ŷ gives

ŷ(k) = B(q)u(k) + (1−A(q))ŷ(k) . (4.16)

4.3.3 Prediction and Estimation

Prediction is when we use the model to predict the output at a given time k for the given input signal

and past observed outputs (i.e. actual instead of predicted past outputs). It can be shown the optimal

predictor (resulting in the lowest prediction error) for the basic model formulation (cf. Eq. 4.8) is given

by (Ljung, 1999)

ŷ(k|k − 1) =
G(q)

H(k)
u(k) +

(
1− 1

H(q)

)
y(k) , (4.17)

which, for the ARX model, becomes

ŷ(k|k − 1) = B(q)u(k) + (1−A(q))y(k) (4.18)

= θTϕ(k) , (4.19)

with

θ = [a1 . . . ana b0 b1 . . . bnb
]T (4.20)

ϕ(k) = [−y(k − 1) . . . − y(k − na) u(k) u(k − 1) . . . u(k − nb)]
T . (4.21)

The θ vector represents the parameters of the model, and determining the θ vector is the purpose of

the system identification exercise. Such a model, consisting of a product between a known data vector

ϕ(k) and an unknown parameter vector θ is called a linear regression, with ϕ(k) called the regression

vector. For a given parameter estimate θ the prediction error is defined as (using Eq. 4.17)

ε(k) := y(k)− ŷ(k|k − 1) (4.22)

=
1

H(q)
y(k)− G(q)

H(k)
u(k) (4.23)

= y(k)− θTϕ(k) . (4.24)

Eq. 4.24 may be developed for k = 0, . . . , N − 1 and grouped into matrix form as

ε[0,N−1] = Y − Φ θ , (4.25)
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with ε[0,N−1] = [ε(0), . . . , ε(N − 1)]T, Y = y[0,N−1] = [y(0), . . . , y(N − 1)]T and Φ = [ϕ(0), . . . , ϕ(N −
1)]T, called the regression matrix. When selecting a scalar-valued cost function V of the prediction

error ε[0,N−1], the ideal parameter estimate θ̂ may be defined as the one that minimizes this cost

function, i.e.

θ̂ = argminθV (ε[0,N−1])

= argminθV (u, y, θ) . (4.26)

Choosing a quadratic cost function for V , namely

V =
N−1∑
k=0

ε2(k) , (4.27)

enables the optimal estimate to be determined by linear optimization methods, specifically the least

squares method. This allows the analytic solution of the best parameter estimate θ̂ to be determined

from

ΦT Φ θ̂ = ΦTY . (4.28)

4.3.4 Inconsistency of the ARX Model

A set of identification data with length N → ∞ is said to be informative enough with respect to

a given model structure if it can distinguish between different models in the model structure, i.e.

if when two models have the same one-step-ahead prediction for the data set, they must have the

same transfer function. If a model structure (such as the ARX model structure) is flexible enough

to include the true test system and the identification data is informative enough with respect to the

model structure, then the true system will be found by the limit estimate, θ∗, which is defined as the

estimate that is obtained when the data length N → ∞, and say that the estimate is consistent. A

problem of the ARX model structure is that the 1/A(q) noise model of the ARX model is not very

realistic, with additive disturbances, as modeled in output error models, being much more common.

This results in the parameters estimated for the ARX model being biased and inconsistent whenever

the real noise mechanism doesn’t conform to the ARX model’s very special noise model (Nelles, 2001).

Inconsistency refers to that fact that the error persists even for infinite data length. A few strategies

to circumvent this problem are as follows:

• The instrumental variable identification procedure may be used. This is a multi-step identifica-

tion method that comes at the expense of added effort (Ljung, 1999).

• Use a more general model structure than the ARX model, such as the OE model. With model

structures where the transfer function model G(q) and noise model H(q) are distinct (i.e. in-

dependently parameterized), such as the OE model, consistent identification is achieved even
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when the noise model structure cannot exactly model the process noise dynamics. The downside

is that parameter identification methods are also more complex for OE models, and that the

unconditional consistency applies only for open-loop systems (which is not usually the case in

response reconstruction).

• A prefilter strategy can be used with the ARX model and least squares identification in an

iterative manner to identify what is effectively an OE model, with the associated consistency

advantages of the OE model, but with the convenience of the ARX model and least squares

identification (for more detail see the discussion of prefiltering in Section 4.6).

In response reconstruction, however, we will usually settle for use of the ARX model identified in the

straight-forward manner with least squares despite its inherent bias and inconsistency, primarily for

the sake of its convenience.

4.3.5 Characterization of Model Fit

If the true system is not included in the model structure used in system identification, then the

parameter estimate θN is inconsistent, no matter how large N is, and must necessarily differ from the

true system, in other words, be biased, even for the limit estimate. We now examine the frequency

domain representation of the quadratic loss function for the limit estimate for the case of inconsistent

estimates (Ljung, 1999). Noting that for the prediction error (cf. Eq. 4.7)

ε(k) =
1

Ĥ(q, θ)
(y(k) − Ĝ(q, θ)u(k)) (4.29)

=
1

Ĥ(q, θ)
(G0(q)u(k) + v(k) − Ĝ(q, θ)u(k)) (4.30)

=
1

Ĥ(q, θ)
((G0(q)− Ĝ(q, θ))u(k) + v(k)) , (4.31)

with Ĝ representing the model of the physical system G0, the loss function in terms of the PSD of the

prediction error Φε becomes

E{I(θ)} =
1

4π

∫ π

−π
Φε(ω, θ)dω (4.32)

=
1

4π

∫ π

−π

(
|G0(e

jω)− Ĝ(ejω, θ)|2 Φu(ω) + Φv(ω))
) 1

|Ĥ(ejω, θ)|2
dω , (4.33)

with Φu and Φv the PSDs of the input and noise signals respectively, E{· } representing mathematical

expectation. If the noise term can be neglected Eq. 4.33 reduces to

E{I(θ)} ≈ 1

4π

∫ π

−π
|G0(e

jω)− Ĝ(ejω, θ)|2Q(ω)dω (4.34)

Q(ω) =
Φu(ω)

|Ĥ(ejω, θ)|2
dω . (4.35)
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Interpreting Q(ω) as a frequency dependent weighting factor it is observed that the model fit is

optimized at frequencies where (1) Φu(ω) is large, or (2) the noise model’s frequency response is small.

The former mechanism opens up the possibility of influencing the model fit by the shape of the input

signal’s spectrum, specifically optimizing it in frequencies at which the model is intended to be used.

The second mechanism shows that the choice of noise model also influences the model fit. In case of

the ARX model the noise model Ĥ(q) = 1/A(q) typically has a low pass characteristic, implying that

1/|Ĥ(ejω, θ)|2 has a high pass characteristic, thus accentuating the high frequency end of the model

fit and implying that the ARX model’s fit is biased towards the high frequency end. By accentuating

low frequencies in the input spectrum we may counter the natural bias towards high frequencies of

the ARX model fit. Note that in case of OE models, with a unity noise model, the fit is consequently

weighted only by the input spectrum.

4.3.6 Model Variance

Consider a parameter vector estimate, θ(D), for a model that is obtained from system identification

on a set of input and output data (hereafter referred to as identification data) for a given test system.

D contains all choices (variables) associated with the identification data including, amongst others,

the length of the data, N , the order (i.e. ’size’) of the model, n, and the variance of the noise input

signal to the noise model λ0. θ(D) defines a model T̂ = [Ĝ Ĥ] of the true system T = [G H] (cf. Eq.

4.8). Defining a quadratic norm J(D) on the model error T̃ = T̂ (D)− T , it can be shown that

J(D) = JP (D) + JB(D) ,

where JP (D) is due to the inherent variance of the parameter estimate, and JB(D) is due to the bias

of the model estimate. If the model is consistent then the bias error becomes negligible and J(D) is

dominated by the variance error JP (D). Ljung (1999) gives an asymptotic (as N → ∞) formula for

the variance error JP (D). From this formula it is observed for the variance error associated with the

system dynamics G(q), per se, or for the case of purely additive output noise (i.e. H(q) = 1), that

J(D) ≈ JP (D) ∝ λ0
n

N
(4.36)

for large n (i.e. n→ ∞). Thus, the variance of the parameter estimate can be reduced by reducing the

noise variance, reducing the model size, or increasing the duration of the identification data. These

guidelines are still valid even when H(q) �= 1. In the frequency domain, for Ĝ in particular, we have

Cov Ĝ(ejω) ≈ n

N

φv(ω)

φu(ω)
(4.37)

with φu and φv the spectra (i.e. PSDs) of u and v respectively, and Cov Ĝ(ejω) defined as

Cov Ĝ(ejω) = E |Ĝ(ejω)− E Ĝ(ejω)|2 (4.38)
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Another factor that impacts the variance of θ(D) is the sample frequency, fs, of the identification

data. For the signals to be as informative as possible, the sample frequency should be high enough

– at least twice the highest frequency content of the data deemed the interesting part of the process.

However, the short sample period that results from a high sample frequency translates into an increase

in the variance of the estimate if it is much shorter than the dominant time constants of the system.

Conversely, when the sample period exceeds the dominant time constants of the system, the variance

drastically increases. The minimum occurs when the sample period roughly equals the dominant

time constants of the system. Too fast sampling is therefore better than too slow sampling. This,

together with the fact that the dominant time constants are often not known a priori, often leads to

the recommendation to sample at approximately 10× the bandwidth of the system. Care should be

taken though, as too fast sampling is directly linked to two mechanisms resulting in inaccuracy in the

low frequency regime of the estimated model, namely (1) model numerical problems (cf. Section 4.6)

and (2) model bias towards high frequencies in case of ARX models (cf. Section 4.3.5).

4.3.7 Choice of Excitation

The analysis of the bias distribution in Section 4.3.5 shows that model quality will be better in the

frequencies where the power in the input signal’s spectrum is greater. Thus, when we expect the

model bias to be significant, such as is typically the case for the ARX model’s noise model or when

modelling a nonlinear system with a linear model, the input spectrum should ideally be tailored in

view of the intended frequency range for which the model is to be applied (or for nonlinear systems

operate at the same nominal operating point as in practice). Since parameter variance is also reduced

by increasing the input signal power and reducing the noise power, cf. Eq. 4.37, a good choice of input

signal amplitude range will have a good (i.e. high) signal to noise ratio at frequencies of interest. In

case of nonlinear systems it is often found that lower amplitude input signals may result in better

model fits to be achieved, at the expense of the model representativity being aimed at this operating

range.

A number of possible designs may be used for the input signal, such as steps, rectangular waves,

pseudo random binary signals, or filtered white noise (Nelles (2001) and Ljung (1999)). The use of

filtered white noise is recommended because it allows input signals to be generated to any desired

spectrum.

4.3.8 Identification of Closed-Loop Systems

Consider a typical feedback control system as shown in Fig. 4.2. Note that the Gc-Ga feedback loop

of the real time system involved in response reconstruction (cf. Fig. 4.1) may be expressed in a form

very similar to Fig. 4.2, with the remaining Gs part an open-loop system in series with the closed-
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u(k) y(k)r(k)

v(k)

u(k) y(k)r(k)
G0

-F0

Figure 4.2: Closed loop control system in system identification.

loop system (thus representing no new conceptual complication). The main complication when trying

to do system identification of the plant G0(q) is the fact that the reference input r(k) is correlated

with the noise v(k) due to the presence of the feedback loop. Two approaches exist (Ljung, 1999)

to do system identification of the plant G0(q), namely the direct and indirect approach. In direct

identification the plant G0(q) is identified from u(k) and y(k) as if it is open loop (thus ignoring the

effects of the feedback loop). In indirect identification the closed-loop system between r(k) and y(k)

is identified, and the plant estimate Ĝ(q) is subsequently inferred from the closed-loop system. The

complete closed-loop system is given by

y(k) = T0(q)r(k) + vcl(k) (4.39)

=
G0(q)

1 +G0(q)F0(q)
r(k) +

1

1 +G0(q)F0(q)
v(k) (4.40)

Thus, in indirect identification the closed loop system T0(q) between r(k) and y(k) is identified,

resulting in the estimate T̂ (q). For this purpose we will typically use an ARX model in the linear case.

Since in response reconstruction we seek a model of the entire test system to use in the ILC procedure,

the indirect approach is therefore the approach we employ, with no further subsequent effort to obtain

Ĝ(q) from the estimated T̂ (q). With regard to the variance and bias of the estimate obtained with

the indirect approach, we have the following results: The asymptotic expression (i.e. for large N) of

the variance of T̂ (q) is

Cov T̂ (ejω) =
n

N

φv,cl(ω)

φr(ω)
, (4.41)

with n and N as before and φr and φv,cl the spectra of r and vcl respectively. Furthermore, if the

model is flexible enough to represent the true system T0(q), the estimate will be consistent. This

is usually not the case with the noise model of the ARX model, however, in view of the relatively

low noise levels of laboratory test systems the use of the ARX model in the linear case for response

reconstruction purposes will generally be acceptable.
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4.3.9 Handling of Offsets

Input and output signals often have non-zero offsets, or equilibrium points, whereas in system identi-

fication the need is for input and output data in terms of deviations from the equilibrium point, i.e.

around a zero offset. Various approaches exist to accommodate this situation, with the one adopted

here to explicitly remove the non-zero offsets of input and output data by preprocessing. Whenever

the model is to be used for simulation the offset values are afterwards added again to the input and

calculated output signal. In order to easier and more accurately estimate the offsets the approach

followed here is to precede the input signal during testing with a period during which the input signal

offset is held constant, and follow the input signal with another such period. This allows the output

signal offset to be explicitly measured during these pre - and post ”dead times”, and to calculate

trends in the offset over the duration of the test.

4.4 Nonlinear Parametric System Modeling: The NARX Model

4.4.1 Input-Output Models with Feedback

We now focus on the identification of nonlinear parametric models of the nonlinear test system in

response reconstruction. A very general nonlinear system description is given by the nonlinear state

space model (cf. Eq. 4.1). The use of nonlinear state space (internal dynamics) models, though de-

sirable due to their lower model order than external dynamics models, is considerably complicated

by the need to estimate not only the model parameters during system identification, but the internal

states also, leading to a general preference for the simpler input-output (external dynamics) mod-

els. Nonlinear input-output models are capable of representing a wide range of systems (Leontaritis

& Billings, 1985), but are not as general as nonlinear state space models, facing limitations with

non-unique nonlinearities (such as backlash and hysteresis) and non-invertible nonlinearities (Nelles,

2001:562). Under assumption that the system is locally linearizable around the equilibrium point, it

may be represented by the nonlinear input-output model structure (Chen & Billings, 1989a), which

in prediction format is given as

ŷ(k|k − 1) = F (ϕ(k)) . (4.42)

For the so-called NARX (Nonlinear ARX) model structure ϕ(k) is given as:

ϕ(k) = [u(k − 1) . . . u(k − nb) y(k − 1) . . . y(k − na)]
T . (4.43)

The NARX model parameters are estimated with the model in predictor format (as here). When the

model is trained in simulation rather than in prediction, we get the NOE (nonlinear output error)

model, which is therefore given by

ϕ(k) = [u(k − 1) . . . u(k − nb) ŷ(k − 1) . . . ŷ(k − na)]
T . (4.44)
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The NARX and NOE models are examples of a nonlinear model with output feedback. (We do not

discuss models without output feedback here.) The disadvantages of models with output feedback are

(Nelles, 2001:558):

• The model orders na and nb are difficult to estimate in an efficient way, resulting in trial and

error being the usual approach for their determination.

• Model stability cannot generally be proven, and is instead demonstrated using extensive simu-

lations with the model.

One advantage of output-feedback models is that they are relatively compact compared to non-output

feedback models (for example NFIR models). This is an important advantage in case of MIMO

systems, whose size grows strongly out of proportion with the length of ϕ(k) (the dimension of the

input space), which is referred to as the ”curse of dimensionality”.

4.4.2 NARX Model Issues

The major advantage of the NARX model is that when it is formulated in terms of polynomial

functions (see below) the model parameters are easy to identify using linear optimization methods

such as least squares because it is then linear in the parameters. Some disadvantages for the NARX

model in particular are similar to the ARX model, namely (Nelles, 2001:559)

• Numerical problems during identification in case of high sample frequency (discussed in more

detail in Section 4.6.1);

• Unrealistic noise model, leading to inconsistent model structure and thus biased parameter

estimates (cf. Section 4.3.4); and

• Emphasis of the model fit on higher frequencies due to the low pass characteristic of the noise

model (cf. Section 4.3.5).

In response reconstruction the need is to use the model in simulation rather than in the (one-

step-ahead) prediction format. NOE models may potentially be more accurate than NARX models

when the intended usage is simulation (which is the usage in which the NOE model is identified),

rather than one-step-ahead prediction (which is the usage in which the NARX model is identified).

Furthermore, because NOE models are identified in simulation they will reveal model instability

during identification already, whereas the NARX may only reveal it during simulation and not during

identification (because a one-step-ahead predictor model may be stable whereas the same model in

simulation may be unstable). This problem is more serious when the model is used to extrapolate in

regions that were not covered in the identification input data because these regions are more prone
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to instability. The disadvantage is that NOE models require more complex (nonlinear) identification

procedures.

4.4.3 Design of Excitation Signal

The choice of excitation signal for use in identification of nonlinear models is much more crucial than

for linear models. Because these models are much more complex than linear models, their identification

data must contain much more information. In response reconstruction the test system will generally be

available for experimentation, and may generally be excited over a large range of its operating regime

if needed. This is indeed necessary to avoid the model being employed in extrapolation (i.e. when the

model is employed in a dynamic regime that did not feature in the data the model was estimated with)

for some operating conditions during subsequent use, which carries a high risk of model inaccuracy or

instability. In view of the fact that the model size of nonlinear models is orders of magnitudes larger

than linear models, as shown in Section 4.4.4, it follows that the identification data need to be as

long as practically possible in order to capture as much information of the process as possible, and

thereby minimise the model parameter estimate variance. The recommended approach for the design

of excitation data for nonlinear systems therefore, as with linear systems, is to generate random data

that conforms to a prescribed PSD, either by filtering of white noise or some other generating method.

The PSD may be designed to match the excitation aspects expected to dominate in the generation of

field responses of the structure, and/or may try to compensate for expected bias of the NARX model

towards higher frequencies by accentuating low frequency components in the excitation. In summary,

the need is for much longer data than for linear systems, that is varying over the widest range of

operating regimes possible, and with a good spread of energy over the whole frequency range of the

test system.

4.4.4 Polynomial NARX Model Formulation

The general NARX structure of Eq. 4.42 and Eq. 4.43 may be approximated by implementing a

polynomial formulation, leading to the one-step-ahead predictor becoming:

ŷ(k|k − 1) =
∑nz

j1=1 θj1ϕj1(k)

+
∑nz

j1=1

∑nz
j2=j1

θj1j2ϕj1(k)ϕj2(k) . . .

+
∑nz

j1=1 . . .
∑nz

jd=jd−1
θj1...jdϕj1(k) . . . ϕjd(k) ,

(4.45)

with ϕ(k) as in Eq. 4.43, and d the degree of nonlinearity. Model structures with output feedback

(such as the NARX model) that are formulated in this way are sometimes referred to as Kolmogorov-

Gabor polynomial models. The primary advantage of the polynomial NARX model formulation, as

already mentioned, is that the model is linear in the parameters: If the parameters and mononomial
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regressors are grouped into separate column vectors θ and ϕ̃(k) respectively then the prediction error

becomes a linear regression:

ε(k) = y(k)− θTϕ̃(k) . (4.46)

Therefore the parameters may be estimated with linear optimization using least squares. This is

an important advantage from the point of view of speed of calculation of the parameters of the

polynomial NARX model formulation over other nonlinear model structures, and over other NARX

model formulations. Some disadvantages of the polynomial NARX model formulation are:

1. Polynomial models suffer severely from the curse of dimensionality because the model size grows

exponentially with the degree of nonlinearity;

2. Oscillatory interpolation behavior for high polynomial degrees of nonlinearity; and

3. Poor model accuracy or instability during model extrapolation.

In order to mitigate the problem of excessive model size due to the curse of dimensionality

(Item 1 above) polynomial models are usually limited to a degree of nonlinearity of about 3, which

is also low enough to prevent the oscillatory interpolation behavior problem (Item 2) from becoming

a serious issue. The poor extrapolation behavior of the polynomial formulation (Item 3) is remedied

with sufficient attention to the design of the excitation signals for obtaining system identification

data (cf. Section 4.4.3). With due attention to these limitations and in view of the simplicity of

the identification of the polynomial NARX model (using least squares) the polynomial NARX model

becomes very competitive. It remains the classical approach to formulating the NARX model structure

and is still very widely used.

4.4.5 Subset Methods for Identification of Polynomial NARX Models

Because of the large number of regressors potentially involved in Eq. 4.45, it is desirable to use

orthogonal least squares (OLS) methods to identify only a subset of the parameters, namely the most

significant parameters (Chen et al. (1989b), Zheng et al. (1999), and Nelles (2001)). Two of these

methods, one based on the Classical Gram-Schmidt procedure and one based on the Modified Gram-

Schmidt procedure, were implemented in this research. Two problems associated with this approach

are (Nelles, 2001:581):

• While resulting in much smaller models than the full-set model of Eq. 4.45, the calculation

process itself becomes very intensive for originally large models.

• Due to being based on the prediction error, the selection procedure is negatively impacted by

too high sample frequencies in the presence of output feedback. (This is briefly discussed in

Section 4.6.)
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Zheng et al. (1999) furthermore point out the need to bias the parameter selection criterion in favour

of monomials of lower degrees of nonlinearity, as well as the inadequacy of typical identification data

sets to not just identify models with which to predict simulation outputs with relative accuarcy, but

identify system invariants such as fixed points, limit cycles and domains of attraction (Arrowsmith &

Place, 1992).

4.5 Inversion of the NARX Model

4.5.1 Conversion to State Space Form

Consider the SISO polynomial NARX formulation model (from Eq. 4.42 and 4.43)

y(k) = F (ϕ(k)) , (4.47)

with

ϕ(k) = [u(k − r) . . . u(k − nb) y(k − 1) . . . y(k − na)]
T , (4.48)

and r ≥ 1. Here y(k) represents the simulation output of the model (thus we discard the prediction

vs. simulation distinction in notation here). For reasons shortly discussed, we assume that there is a

term containing u(k − r) only in Eq. 4.47, and that the u(k − r)-only term is linear, and there are no

other terms containing u(k − r), however without imposing similar restrictions on the other u(k − i),

i > r. (This renders the model input affine, as is shortly discussed in Section 4.5.3.) This restriction

can be implemented during the system identification phase. The resulting NARX model is thus of the

form

y(k) = θ1u(k − r) + F̃ (u(k − r − 1), . . . , u(k − nb), y(k − 1), . . . y(k − na)) . (4.49)

To obtain a corresponding state space system we can use the following state vector

x(k) = [u(k − 1) . . . u(k − nb) y(k − 1) . . . y(k − na)]
T , (4.50)

from which there exists a (na + nb − r)× (na + nb) matrix P such that ϕ(k) = Px(k), and the model

(Eq. 4.47) may be expressed in terms of x as

y(k) = F (Px(k)) .

Using the state vector x Eq. 4.49 may be converted to the following state space form:

x(k + 1) = f(x(k), u(k)) (4.51)

= f0(x(k)) + bu(k) (4.52)

y(k) = h(x(k)) , (4.53)
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with u(k), y(k) ∈ �, x(k) ∈ �n, n = na + nb,

f(x(k)) + bu(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(k + 1) = u(k)

x2(k + 1) = u(k − 1) = x1(k)
...

...
...

xnb
(k + 1) = u(k − nb + 1) = xnb−1(k)

xnb+1(k + 1) = y(k) = F (Px(k))

xnb+2(k + 1) = y(k − 1) = xnb+1(k)
...

...
...

xnb+na(k + 1) = y(k − na + 1) = xnb+na−1(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.54)

and

h(x(k)) = F (Px(k)) . (4.55)

Since F is a polynomial model structure (x◦, u◦) = ([0], [0]) is an equilibrium point of the system.

4.5.2 Conversion to Normal Form

To invert the state space model (Eq. 4.52 and Eq. 4.53) we first convert the model to the normal form,

for which we choose a coordinate transformation z = ψ(x) with

z(k) = ψ(x(k))

= [h(x(k)), h ◦ f0(x(k)), . . . , h ◦ f r−1
0 (x(k)), xr+1(k), . . . , xn(k)]

T , (4.56)

with the exponent of f0 referring to the order of the composition. By the definition of f0 and h in

Eq. 4.52 and Eq. 4.53 and x in Eq. 4.50, it follows that zi(k) = ψi(x(k)) = y(k + i− 1), i = 1, . . . , r.

The remaining states ψr+1(x), . . . , ψn(x) were simply chosen to result in the Jacobian of ψ(x) being

nonsingular at the point x◦ = [0], so that z = ψ(x) qualifies as a local coordinate transformation in a

neighbourhood of x◦. Thus, in terms of u and y the state vector z becomes (cf. Eq. 4.50)

z(k) = [y(k) . . . y(k + r − 1) u(k − r − 1) . . . u(k − nb) y(k − 1) . . . y(k − na)]
T . (4.57)
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In the new z coordinates the system takes on the normal form (cf. Eq. 2.17 - 2.19):

z1(k + 1) = y(k + 1) = z2(k)
...

...
...

zr−1(k + 1) = y(k + r − 1) = zr(k)

zr(k + 1) = y(k + r) = α(z(k)) + β(z(k), u(k))

zr+1(k + 1) = u(k − r) = q1(z(k))

zr+2(k + 1) = u(k − r − 1) = zr+1(k)
...

...
...

znb
(k + 1) = u(k − nb + 1) = znb−1(k)

znb+1(k + 1) = y(k) = z1(k)

znb+2(k + 1) = y(k − 1) = znb+1(k)
...

...
...

znb+na(k + 1) = y(k − na + 1) = znb+na−1(k)

(4.58)

and

y(k) = z1(k) (4.59)

4.5.3 Inversion of Normal Form

When performing inversion of a model a known output signal, y, is applied to the inverse of the model.

To obtain the inverse model, we observe the following for the normal form of the model (Eq. 4.58 and

Eq. 4.59):

• zr+1(k+1), . . . , znb+na(k+1) in Eq. 4.58 are not functions of u(k) explicitly and, therefore, the

elimination of u(k) in these functions during inversion is thus not required,

• q1 does not depend on z2, . . . , zr,

• znb+1(k + 1), . . . , znb+na(k + 1) in Eq. 4.58 are already known (from y(k)).

The only unknown states are zr+1(k), . . . , znb
(k), which we designate here η1(k), . . . , ηnb−r(k), i.e.

ηi(k) = zr+i(k) ,

with i = 1, . . . , nb − r. The inverse system is now obtained from the normal form as

η(k + 1) = f̄(η(k), c(k)) (4.60)

u(k) = h̄(η(k), c(k)) . (4.61)
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The state equation (Eq. 4.60) is obtained from Eq. 4.58 as (cf. Eq. 4.57)

η1(k + 1) = u(k − r) = q1(η(k), z1(k), znb+1(k), . . . , znb+na(k))

= q1(η(k), y(k), . . . , y(k − na))

η2(k + 1) = u(k − r − 1) = η1(k)
...

...
...

ηnb−r(k + 1) = u(k − nb + 1) = ηnb−r−1(k)

(4.62)

in which the known values (z1(k), znb+1(k), . . . , znb+na(k)) = (y(k), . . . , y(k−na)) are inserted, giving

rise to the constant term c(k). The output equation of the inverse system (Eq. 2.58) is obtained as the

inverse of zr(k + 1) in Eq. 4.58 for u(k). The inverse system may be solved for the bounded solution

of η(k) as in Section 2.4.

We note here that after having solved η(k), u(k) may be determined by advancing η1(k) by

r + 1 time instants (since η1(k) = u(k − r − 1)) instead of using Eq. 2.58. When determining u(k)

in this way then Eq. 2.58 is not needed anymore, and thus neither is z1(k + 1), . . . , zr(k + 1) in Eq.

4.58, which Eq. 2.58 is determined from. The reason is that Eq. 2.58 is now neither used for the

purpose of first eliminating u(k) in zr+1(k + 1), . . . , znb+na(k + 1) to obtain Eq. 4.60 via the typical

inversion procedure, nor for the purpose of solving u(k) after having solved η(k). Therefore, since

z1(k + 1), . . . , zr(k + 1) are not needed anymore, Eq. 4.62 can be conveniently derived directly from

the NARX model Eq. 4.49 by selecting the state vector

η(k) = [u(k − r − 1) . . . u(k − nb)]
T ,

as

η1(k + 1) = u(k − r)

= (y(k) + F̃ (u(k − r − 1), . . . , u(k − nb), y(k − 1), . . . y(k − na)))/θ1

= (y(k) + F̃ (η1(k), . . . , ηnb−r(k), y(k − 1), . . . y(k − na)))/θ1

= q1(η(k), y(k), . . . , y(k − na))

ηi(k + 1) = ηi−1(k) (4.63)

with i = 2, . . . , nb − r.

The model structure of the u(k− r) term in Eq. 4.47 and Eq. 4.48 becomes the model structure

of the β(z(k), u(k)) term in zr(k + 1) in Eq. 4.58, and therefore influences the local relative degree as

defined in Eq. 2.10. While the use of a polynomial model structure for the u(k − r) term in Eq. 4.47

may ensure a relative degree r, this will generally only apply in a neighbourhood u◦, and not globally.

For example, a polynomial model term in Eq. 4.47 containing a quadratic u(k − r) factor will lead to
∂y(k+r)
∂u(k) vanishing for some u and will limit the neighbourhood of u◦ in which the system has relative

degree r (cf. Eq. 2.10). Therefore, here we simplify the situation by allowing only a linear u(k−r) term
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in Eq. 4.47, of the form θ1u(k− r), resulting in the bu(k) term in Eq. 4.52, however without imposing

similar restrictions on the other terms in Eq. 4.47 containing u(k − i) factors. This specialization of

the NARX polynomial model renders it input-affine or control-affine (Nelles, 2001:548,606), which in

case of state space models refers to models of the general form

x(k + 1) = f(x(k)) + b(x(k))u(k) .

The effect of this is to simplify the inversion and thus the construction of a standard procedure for the

identification and subsequent inversion of nonlinear models for use in software for performing response

reconstruction by means of ILC.

Note, finally, if r = nb then u(k − r) may be solved directly from the NARX model and the

inverse becomes a quasi-static model.

4.5.4 Example

In the following example we convert a NARX model with r ≥ 1 first to the state space system of Eq.

4.51 and Eq. 4.52, and then to the normal form (Eq. 4.58 and 4.59) to demonstrate the procedure

of constructing the normal form from an existing state space system. Consider the following NARX

polynomial model:

y(k) = θ1u(k − 4) + θ2u(k − 5)2u(k − 6)y(k − 1)

+θ3u(k − 5)y(k − 4) + θ4y(k − 4) + θ5u(k − 5) + θ6u(k − 6) ,
(4.64)

from which na = 4, nb = 6 and r = 4. Choosing a state vector as in Eq. 4.50, namely

x(k) = [u(k − 1) . . . u(k − 6) y(k − 1) . . . y(k − 4)]T , (4.65)

gives the state space system Eq. 4.52 and Eq. 4.53 as

x(k + 1) = f0(x(k)) + bu(k)

y(k) = h(x(k)) ,
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with u(k), y(k) ∈ �, x(k) ∈ �n, n = na + nb = 10. For the state equation we have (keep in mind Eq.

4.65)

f0(x(k)) + bu(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(k + 1) = u(k)

x2(k + 1) = x1(k)
...

x6(k + 1) = x5(k)

x7(k + 1) = θ1 x4 + θ2 x
2
5 x6 x7 + θ3 x5 x10 + θ4 x10 + θ5 x5 + θ6 x6

x8(k + 1) = x7(k)
...

x10(k + 1) = x9(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.66)

and for the output equation we have

h(x(k)) = θ1 x4 + θ2 x
2
5 x6 x7 + θ3 x5 x10 + θ4 x10 + θ5 x5 + θ6 x6 (4.67)

To obtain the normal form of this system we choose a coordinate transformation z = ψ(x) with

the new state vector as in Eq. 4.56, giving

z1(k) = y(k) = h(x(k))

= θ1 x4 + θ2 x
2
5 x6 x7 + θ3 x5 x10 + θ4 x10 + θ5 x5 + θ6 x6

z2(k) = y(k + 1) = h ◦ f0(x(k))

= θ1 x3 + θ2 x
2
4 x5 [y(k)]=z1 + θ3 x4 x9 + θ4 x9 + θ5 x4 + θ6 x5

z3(k) = y(k + 2) = h ◦ f20 (x(k))

= θ1 x2 + θ2 x
2
3 x4 [y(k + 1)]=z2 + θ3 x3 x8 + θ4 x8 + θ5 x3 + θ6 x4

z4(k) = y(k + 3) = h ◦ f30 (x(k))

= θ1 x1 + θ2 x
2
2 x3 [y(k + 2)]=z3 + θ3 x2 x7 + θ4 x7 + θ5 x2 + θ6 x3

z5(k) = u(k − 5) = x5

z6(k) = u(k − 6) = x6

z7(k) = y(k − 1) = x7

z8(k) = y(k − 2) = x8

z9(k) = y(k − 3) = x9

z10(k) = y(k − 4) = x10 (4.68)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



4.5. INVERSION OF THE NARX MODEL 113

ψ(x) may be confirmed to have a nonsingular Jacobian. The inverse coordinate transform is given as

x1(k) = u(k − 1) = 1
θ1
(z4 − θ2 [u(k − 2)2]=x2 [u(k − 3)]=x3 z3

−θ3 [u(k − 2)]=x2 z7 − θ4 z7 − θ5 [u(k − 2)]=x2 − θ6 [u(k − 3)]=x3)

x2(k) = u(k − 2) = 1
θ1
(z3 − θ2 [u(k − 3)2]=x3 [u(k − 4)]=x4 z2

−θ3 [u(k − 3)]=x3 z8 − θ4 z8 − θ5 [u(k − 3)]=x3 − θ6 [u(k − 4)]=x4)

x3(k) = u(k − 3) = 1
θ1
(z2 − θ2 [u(k − 4)2]=x4 z5 z1

−θ3 [u(k − 4)]=x4 z9 − θ4 z9 − θ5 [u(k − 4)]=x4 − θ6 z5)

x4(k) = u(k − 4) = 1
θ1
(z1 − θ2 z

2
5 z6 z7 − θ3 z5 z10 − θ4 z10 − θ5 z5 − θ6 z6)

x5(k) = u(k − 5) = z5

x6(k) = u(k − 6) = z6

x7(k) = y(k − 1) = z7

x8(k) = y(k − 2) = z8

x9(k) = y(k − 3) = z9

x10(k) = y(k − 4) = z10

(4.69)

The resulting normal form of the system is

z1(k + 1) = y(k + 1) = z2(k)

z2(k + 1) = y(k + 2) = z3(k)

z3(k + 1) = y(k + 3) = z4(k)

z4(k + 1) = y(k + 4) = θ1 u(k) + θ2 [u(k − 1)2]=x1 [u(k − 2)]=x2 z4

+θ3 [u(k − 1)]=x1 z1 + θ4 z1 + θ5 [u(k − 1)]=x1 + θ6 [u(k − 2)]=x2

z5(k + 1) = u(k − 4) = 1
θ1
(z1 − θ2 z

2
5 z6 z7 − θ3 z5 z10 − θ4 z10 − θ5 z5 − θ6 z6)

z6(k + 1) = u(k − 5) = z5(k)

z7(k + 1) = y(k) = z1(k)

z8(k + 1) = y(k − 1) = z7(k)

z9(k + 1) = y(k − 2) = z8(k)

z10(k + 1) = y(k − 3) = z9(k)

y(k) = z1(k)

(4.70)

With z1(k), . . . , z4(k), z7(k), . . . , z10(k) known, by setting (η1(k), η2(k)) = (z5(k), z6(k)) the following

2 dimensional system may be extracted from Eq. 4.70

η1(k + 1) = u(k − 4) = 1
θ1
(z1 − θ2 η

2
1 η2 z7 − θ3 η1 z10 − θ4 z10 − θ5 η1 − θ6 η2)

η2(k + 1) = u(k − 5) = η1(k)
(4.71)

By inserting the known values for z1(k), . . . , z4(k), z7(k), . . . , z10(k) into Eq. 4.71, we obtain the state

equation of Eq. 4.60:

η(k + 1) = f̄(η(k), c(k))

=

⎡
⎣ C1(k) η1(k) + C2 η2(k) + C3(k) η1(k)

2 η2(k) + c1(k)

η1(k)

⎤
⎦ (4.72)
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with

c(k) =

(
1

θ1
z1(k)−

θ4
θ1
z10(k), 0

)T

C1(k) = −θ3
θ1
z10(k)−

θ5
θ1

C2 = −θ6
θ1

C3(k) = −θ2
θ1
z7(k)

which may be evaluated by the substitution of Eq. 4.68. This state equation for the inverse system

may be solved for the bounded solution of η(k) as in Section 2.4. We use the initial condition

η(0) = [0]. Having determined the bounded η(k), u(k) is finally obtained as u(k) = η1(k + 5) (since

η1 = z5 = u(k − 5) - cf. Eq. 4.68).

4.6 The Multiple-Model Method

In this section some mechanisms of inaccuracy during the identification of ARX and NARX models are

discussed, following which possible remedies are discussed and the multiple-model method is selected to

address the problem. The method is further developed for implementation in response reconstruction,

which requires the identification and subsequent inversion of the models in the approach.

4.6.1 Mechanisms of Inaccuracy in the Identification of NARX Models

The following are two mechanisms of general model inaccuracy of parametric time domain models:

• Variance of the parameter estimate due to finite data length and model size: In

Section 4.3.6, Eq. 4.36 the dependence of variance on the identification data length N and

model size n was given for large N , with the variance being directly proportional to n/N . The

model error due to parameter variance due to finite N and model size n is not known to be

inherently frequency biased.

• Bias of the parameter estimate due to ARX and NARX model inconsistency:

When the model is not flexible enough to accurately model the physical system, parameter

estimation is inconsistent and necessarily results in bias error. The bias of ARX (and by extension

NARX) models due to their unrepresentative noise models was already discussed in Section 4.3.4.

In practice the types of nonlinearity of physical systems are widely varying and it is therefore

generally difficult, if not impossible, to have a nonlinear model flexible enough to fully represent

the physical system. The frequency dependence of the model error due to the inconsistency will
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vary on a case by case basis depending on which part of the physical test system’s dynamics the

model cannot accommodate.

The following are two mechanisms of general model inaccuracy of parametric time domain

models relating to the choice of sample frequency:

• Sensitivity of parameter variance to sampling frequency: A short sample period trans-

lates into an increase in the variance of the estimate if it is much shorter than the dominant

time constants of the system. Conversely, when the sample period exceeds the dominant time

constants of the system, the variance drastically increases. The minimum occurs when the sam-

ple period roughly equals the dominant time constants of the system. Too fast sampling is

therefore better than too slow sampling (a value of 10× the bandwidth of the system is often

recommended). Refer to Section 4.3.6 for more details.

• Sensitivity of structure and parameter identification of feedback models to sample

frequency: When the sample frequency becomes very high there is a tendency for consecutive

y(k−i) and u(k−i) terms to become highly correlated. In polynomial NARX models this results

in different monomial regressors with a similar structure becoming virtually indistinguishable,

leading to suboptimal model structure identification during orthogonal least square identification

of subset NARX models. In the extreme the output y(k) becomes nearly identical to y(k −
1), leading to the latter becoming the only selected regressor and causing proper structure

identification to become impossible. This is discussed in Billings and Aguirre (1995), which also

suggests a lower sample frequency for structure identification, and a somewhat higher sample

frequency for parameter identification.

The above-mentioned model inaccuracies are general in nature, meaning the model error cannot

be characterized as consistently having a frequency based tendencies of one type or another. Two

mechanisms of model inaccuracy of parametric time domain models that impact the low frequency

accuracy specifically are:

• Low frequency inaccuracy due to model numerical problems: When the sample fre-

quency becomes high enough, at some stage the low frequency trends, which are slowly varying,

tend to fall below the A-D resolution and thus become invisible to the identification methods

of parametric models such as the ARX model that examine only a relatively small window of

the data history at a time. The resulting model numerical problems effectively limit the lowest

frequency that can be modeled with a particular model and sample frequency. The problem is

illustrated in the following analysis (Goodwin, 1985). Consider the time-domain equivalent of a

simple lag, G(s) = 1/(τs + 1), and apply Euler’s discretization formula, resulting in

y(k + 1) = y(k)− Ts
τ
(y(k) − u(k)) , (4.73)
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with Ts the sample period. Assume u(k) and y(k) are scaled to the range (−1, 1) and let b be the

precision of the A-D converter in terms of number of bits. If the Ts/τ factor is smaller than the

value represented by the least significant bit, i.e. 1/2b, the second term on the right hand side

disappears and Eq. 4.73 becomes useless. Thus, the model requires that τ/Ts � 2b. Assuming

b = 10 and letting fB = 1/(2πτ) be the bandwidth and fs = 1/Ts the sample frequency, it is

therefore required that fB > fs/1000. In other words, the lowest-frequency dynamics that can

be modeled with such an A-D system is fs/1000. Recalling the suggestion that fs = 10fB (cf.

Section 4.3.6), the range of useable frequencies f becomes

fs
1000

< f < fB =
fs
10

, (4.74)

which is just 2 decades. Goodwin states that, if anything, this analysis is still generous. Clearly

the situation can be alleviated by either reducing the sample frequency or increasing the A-D

resolution. The former approach however carries the risk overestimating the usually unknown

time constants. The latter approach is useful, with between 16 bit and 24 bit A-D and D-A

conversion having become common in recent times.

• Low frequency inaccuracy due to ARX and NARX model bias: The other possible cause

of low frequency inaccuracy is bias of the identification procedure towards the high frequencies

that may be experienced by ARX (and by extension NARX) models. The limit estimate may

be described as (cf. Section 4.3.5):

θ∗ = argmin
θ

∫ π/Ts

−π/Ts

∣∣∣G0(e
jωTs)− Ĝ(ejωTs , θ)

∣∣∣2Q(ω, θ)dω (4.75)

Q(ω, θ) =
φu(ω)∣∣∣Ĥ(ejωTs , θ)

∣∣∣2 , (4.76)

with φu(ω) the spectrum of the input. It is clear from Eq. 4.75 that Q, and thus Ĥ and φu, act

as a frequency-dependent weighting function for penalizing the misfit between Ĝ and G0. The

impact of using a high sample frequency is to increase the frequency range of the integral. This is

usually not detrimental since G0(e
jωTs)−G(ejωTs , θ) usually tends to zero at higher frequencies.

However, when the noise model is coupled to the dynamics, as is the case for ARX models where

H(ejωTs) = 1/A(ejωTs), then the product∣∣∣G0(e
jωTs)−G(ejωTs , θ)

∣∣∣ 2
|H(ejωTs , θ)| 2

(4.77)

does not tend to zero at high frequencies. As a result the model fit is biased towards the high

frequency region, resulting in the concentration of inaccuracy in the low frequency region. NARX

models exhibit similar bias tendencies based on a similar mechanism (Nelles, 2001:559). Three

corrective measures aimed at improving low-frequency bias of ARX and NARX models are the

following:
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– Increasing the weight of the Q-factor in the low frequency region by modifying the input

spectrum;

– Increasing the weight of the Q-factor in the low frequency region by prefiltering the iden-

tification data; and

– Reducing the sample frequency in order to shrink the band of inaccuracy as much as

possible. This suggestion forms the basis of the multiple model approach.

These three corrective measures are now briefly discussed in turn, not just from the point of

view of relieving low frequency bias, but of low frequency model accuracy and model accuracy

generally. The last measure, leading to the multiple model approach, will be the main focus

here.

4.6.2 Methods to Improve the Accuracy of NARX Model Identification:

Increasing the energy of the input spectrum, φu(ω), in the low frequency region will strengthen

the Q factor in the low frequencies. In view of the risk of bias in the ARX and NARX model, it is

considered prudent to routinely accentuate the low frequency region of the input signal regardless of

what additional measures to improve accuracy are employed.

With regard to the prefiltering approach, note that applying a prefilter to the prediction error

before doing parameter estimation (cf. Eq. 4.30) results in (for the SISO case):

εF (k, θ) = L(q)ε(k, θ)

=
L(q)

Ĥ(q, θ)
(y(k)− Ĝ(q, θ)u(k)) , (4.78)

implying that the effect of prefiltering is equivalent to changing the noise model to Ĥ(q, θ)/L(q), in

which case the Q factor in Eq. 4.76 becomes

Q(ω, θ) =

∣∣∣L(ejωTs)
∣∣∣ 2 φu(ω)∣∣∣Ĥ(ejωTs , θ)

∣∣∣ 2 . (4.79)

We can design L(q) specifically to increase the low frequency values of Q, and apply it to the prediction

error, which clearly is equivalent to applying it to u and y if the predictor is linear and time invariant

(cf. Eq. 4.78). In case of nonlinear models L(q) is applied to the prediction error. Note that proper

use of prefiltering not only allows the low-frequency bias to be alleviated, but by approximating the

inverse of the noise model itself with the prefilter, the noise model may be made unity and the ARX

model with least square estimation may be used to identify a corresponding OE model, which gives a

consistent estimate despite the non-unity nature of the true process noise dynamics. (The estimate will

be consistent only in case of open-loop identification. This requires an existing estimate of the noise
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model, making it a multi-stage approach. Refer to Nelles (2001:502) where this method is referred to

as Repeated least squares and filtering for OE model estimation.)

The first two general inaccuracy mechanisms listed above (variance due to finite data length

and model inconsistency) have little bearing on the choice of sample frequency or systematic frequency

characterization of the error. Instead they point to the need for adequate data length (even more so for

nonlinear models), and the general inconsistency of the ARX and NARX noise model. As mentioned,

the latter problem may be partly addressed with a prefiltering approach (with guaranteed results for

the open-loop case and linear models). Additionally, the prefiltering approach may also address the

low frequency bias problem of the ARX and NARX model (Spinelli et al. 2005). However, it will

not address the problem of low frequency model inaccuracy associated with limited A/D and D/A

resolution. In view of this, and faced with the prospect of prefilter design on an ad hoc basis, we

prefer a third approach, which is referred to here as the multiple model approach (Ljung, 1999:494),

which is well suited to standardization. In the multiple-model approach the total frequency band is

partitioned into two or more smaller bands, each of which is modeled separately with a submodel

that applies only to part of the total test frequency band. This allows the sample frequency of each

submodel to be reduced to what would be an optimal value for the given frequency band of the specific

submodel (about 10× the high frequency limit of the submodel in question). In line with this is the

suggestion by Billings and Aguirre (1995) that the identification data sample frequency be viewed as

an adjustable parameter that may be adjusted after data gathering to what would be an optimal value

for the identification task at hand. The adjustment is achieved by appropriate anti-aliasing filtering

(in anticipation of the new sample frequency) followed by resampling of the data at a slower rate.

The accuracy of the low frequency model in a multiple model approach is of particular impor-

tance for response reconstruction tests because the low to medium frequency range usually contributes

by far the greatest share of fatigue damage in structures subject to fatigue testing. (For this reason it

is important for the low frequency model to have the flexibility needed to model test system nonlin-

earities that may be of particular relevance at lower frequencies as accurate as possible.) While the

multi-model approach will adress low-frequency inaccuracy problems associated with low A-D resolu-

tion and low-frequency bias of the ARX and NARX models, it will not solve the inconsistency problem

of ARX and NARX models (which, however, is not a low frequency specific problem). But neither

will the prefilter approach in the case of closed-loop systems, which is usually the case in response

reconstruction testing. Two more reasons why the multi-model approach could potentially improve

the accuracy of the low frequency models are:

• The lower sample frequency of the low frequency model alleviates the problem of sensitivity

of structure identification and parameter identification to sample frequency in feedback models

such as the ARX and NARX models (the fourth inaccuracy mechanism mentioned above), which

also improves the accuracy of the low frequency models.
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• It is intuitive that as result of the multi-model approach the low frequency models will have lower

model orders due to the lower sample frequency of these models, which in case of polynomial

NARX models will result in dramatically smaller low frequency models because of the curse of

dimensionality phenomenon. Verifying this is a matter of future research, but if true this is an

important advantage of the multi-model approach for response reconstruction tests that may

sometimes contain up to 12 or more axes (e.g. in case of road simulators; see Wright, 1993:96).

This is because when using polynomial NARX models it will allow much more comprehensive

modelling of nonlinearity in the low frequency models than would have been possible with the

unadjusted sample frequency due to the lower model order needed for the model with the lower

sample frequency allowing higher degrees of nonlinearity to be identified.

In view of the above the multiple model approach is therefore considered the most robust, conve-

nient and tractable approach to solving the problems of low-frequency inaccuracy and the curse of

dimensionality within the framework of polynomial NARX models and linear regression for purposes

of response reconstruction for fatigue testing with large multi-axis test setups.

4.6.3 Implementation of the Multi-Model Method

The implementation of the multi-model method is now briefly developed for respectively model iden-

tification, simulation and inversion. With the use of the multi-model approach having been developed

for these operations, its employment in ILC is exactly as for a single (uni-) model.

During identification of a given submodel the anti-aliasing filtering and re-sampling is done

to both the input and output data before identification (which is the way prefiltering is usually done).

We do not apply the upper and lower frequency limits of the submodel before identification, only the

anti-aliasing filtering (which is a low pass filter at at most half the frequency of the adjusted sample

frequency (referred to as the Nyquist frequency). Consequently, for every submodel the identification

is done on all frequencies from zero up to the Nyquist frequency of the given submodel. The rationale

for this is the following:

• To a low frequency submodel the high frequency behavior appears as instantaneous static rela-

tionships, and can be handled by including an instantaneous term, b0u(k), in the submodel.

• To a high frequency submodel the low frequency behavior resembles integrators. Though an

integrator may be incorporated in the noise model, which is equivalent to differentiating the

data, this will accentuate the high-frequency content and pushes the parameter fit into the high

frequency range. A better option would have been to high-pass filter the data, and in this way

explicitly remove the low frequency behavior, which may in fact be necessary for identification of

OE models (to prevent dynamic behavior from being overshadowed). However, in case of ARX
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and NARX models, which are equation error models and use the least squares identification

method, this is not necessary and the presence of the low frequency data may be tolerated

during identification (this is as result of the inherent flexibility of least squares, and is also

alleviated by the use of higher order models than strictly necessary (Ljung, 1999)).

Thus, identification of a submodel is done on all data up to the particular submodel’s Nyquist frequency

irrespective of the frequency band intended to be applied to a model during subsequent simulation of

the model (via band pass filtering). This is in order as long as we generally include an instantaneous

term (in low frequency models especially), use the ARX or NARX model with least squares estimation,

and use higher model orders than is strictly necessary. Fig. 4.3 shows the identification procedure of

a nonlinear multi-model.

While simulation of the submodel is not directly employed in ILC, it is used to evaluate

the accuracy of the identified submodel. For simulation of a given submodel the following steps are

followed:

1. The anti-alias filtering is applied to the input data;

2. The input data is re-sampled to the desired sample frequency of the submodel;

3. The submodel is simulated with the resampled input data;

4. The calculated output is interpolated again to the original (master) frequency, fs; and

5. The upper and lower frequency limits of the submodel are finally applied via band pass filtering

to the calculated output. All filters (anti-aliasing and band pass filters) are implemented in

zero-phase fashion.

6. In order to compute the simulated result over the entire frequency band of the multi-model, the

filtered output signals of the different submodels are superimposed.

Fig. 4.4 shows the simulation procedure of a multi-model.

The basic approach is thus to do both identification and simulation of a submodel up to

the Nyquist frequency, and only to apply the chosen model frequency band after simulation on the

calculated output. The primary reason for this preference is because it allows the multiple model

approach to more effectively accommodate nonlinear models. When dealing with linear systems the

intended upper and lower frequency limits of the submodel may be enforced before identification of

and simulation with the submodel because of the frequency independence of linear systems. In case of

nonlinear systems there may be a cross influence amongst frequencies which, in order for a submodel

to be as accurate as possible, requires it to operate on the widest frequency range possible in order to

cover as many dynamical cross-influences as possible.
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Figure 4.3: Identification of a nonlinear multi-model.

Finally, to implement the multiple model method in ILC in response reconstruction, we need

a strategy for the inversion of multi-models. This is accomplished by reversing the procedure for

model simulation as described above. In other words, the inverse is formulated for every submodel

and is solved for the input signal over the entire frequency range up to the Nyquist frequency limit.

Afterwards the upper and lower frequency limits of the specific submodel is applied to the calculated

input signal. The input signals calculated in this way for the respective submodels are superimposed

to give the solution of the inverse system over the entire frequency band of the model. Fig. 4.5 shows

the inversion procedure of a multi-model. Fig. 4.6 gives an overall view of the model identification and

validation procedure. The comparison of yr with yrm demonstrates the accuracy of the multi-model.

The comparison of ur with u (and yr with y) demonstrates the accuracy of the inverse multi-model.

Comparison of yr with ym demonstrates the success of the actual inversion procedure itself of the

multi-model. Even for a poor multi-model, if the inverse multi-model is the exact inverse of the

normal multi-model, this will give a very good match of yr with ym. The comparison of yr with ym

thus gives an indication of the accuracy of the inversion itself.
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Figure 4.4: Simulation of a multi-model and comparison with the actual system output.
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Figure 4.5: Simulation of an inverse multi-model and comparison with the actual system input.
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Figure 4.6: Overall view of the system identification and model validation procedure.
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4.7 Example 5: Quarter Vehicle Road Simulator

4.7.1 Introduction

This quarter vehicle road simulator test is a demonstration example to practically investigate the

various suggestions and advances made in this research, including the use of nonlinear inverse models,

of inverse multiple-models in ILC, and of using the alternative ILC algorithm.

While the study focuses only on the accuracy of ILC in two strain channels, the purposes of

such tests, and road simulation tests in general is usually structural integrity validation of the whole

vehicle against fatigue.

For this laboratory set-up synthetic desires response data for the strain gauges was used instead

of field measured strain data. Such data was generated using an actuator drive signal with a spectrum

that has high power at lower frequencies and tapers of at higher frequencies as characteristic of typical

road inputs. The actuator drive signal was tested and the corresponding strain measurements were

saved and designated as desired response data for purposes of subsequent response reconstruction

testing.

4.7.2 Test Setup

The test setup consisted of a monoshock swingarm motorcycle rear suspension, with the frame fitted

with rigidly connected dummy weights. The shock absorber (i.e. damper assembly) is a coil-over-

spring design with an external oil reservoir, and that sits in front of the wheel and connects directly

to the swingarm via a bracket through a pivot point. There were two response channels on the test

specimen:

• Channel A was a 0◦ - 90◦ rosette strain gauge on the shock’s lower bracket connection to the

swingarm. See Fig. 4.10.

• Channel B was a 0◦ - 90◦ rosette strain gauge just behind the front bearing of the swingarm on

the right hand side upper surface of the swingarm. See Fig. 4.11.

AD and DA conversion was synchronized and was done through 24 bit and 16 bit National Instruments

PCI cards respectively. The test specimen was tyre coupled to a 40 kN linear actuator. A picure of

the test rig is shown in Fig. 4.7, and a diagrammatic representation of the test rig is shown in Fig.

4.8.
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4.7.3 System Identification Procedure

In order to obtain identification (ID) data input/drive signals were generated from a tailored PSD

spectrum curve over a frequency range between 1 - 249 Hz. The spectrum was tailored to result

in broad-band random drive signals that gave a realistic spectrum for the corresponding measured

responses. Drive signals were produced for two excitation levels, dubbed “medium amplitude” and

“low amplitude”.

The drive signals had generous duration of about 190 sec, and used about 30% of this duration

for gradual ramp up and another 30% for gradual ramp down. The intention with this was to vary

the operating point of the system for the sake of maximum representavity of the estimated nonlinear

models and least chances of the models being employed in extrapolatory sense during ILC. This will

not be entirely possible however as the general aim was for the “medium amplitude” data to still be

of lower general severity than the envisaged desired responses, which was done from a practical point

of view for the following reasons: Firstly the intensity levels of the drive signal that translate well

to intensity levels of the desired response is unknown at the outset of response reconstruction, and

driving a test system at very high energy states for the durations required for nonlinear identification

data is often undesirable from a rig and specimen safety point of view. Secondly, system identification

is frequently done with relatively low level drive signals (Raath, 1993a) which, when employing linear

system identification as is usually done, have the best chance of resulting in models with a high

accuracy on the ID data (though this is not necessarily optimal when employing the models in response

reconstruction on nonlinear systems at nominal operating points of much higher energy). The intention

was to take a middle road approach where system identification is done on a higher severity data set

than usually employed in response reconstruction (to accommodate the needs of nonlinear system

identification) but not as severe as to match the desired response data, and evaluate the feasibility of

nonlinear methods in this scenario, which was deemed the most viable for practical implementation.

If the models indeed turn out to be employed in an extrapolation sense in response reconstruction

(which is bound to occur) and is unstable for the desired response data, this is not a critical set-back

as the models are employed in the inverse sense only, in which case they are necessarily stably solved

by the stable inversion method.

The subsequent testing of the drive signals to obtain corresponding response signals was a

comprehensive process involving rig warm-up, repetitions of test to check repeatability, averaging of

successive responses obtained for the repetitions (a standard approach in frequency domain identifica-

tion also, aimed at reducing the variance of the estimate), and linear detrending of signals. Channel B

showed considerable non-repeatability, as result of which it was decided to discard the low-amplitude

ID data and only use the medium amplitude ID data during system identification for Channel B for

the sake of a better signal to noise ratio. One possible cause of the non-repeatability is the proximity

of the main swing-arm hinge point and its inherent free play in combination with the low value of the
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bending strain so close to the hinge point. Channel A showed better repeatability than channel B and

thus both the low amplitude and medium amplitude ID data was used during system identification

for Channel A.

System identification was done on three bandwidths, namely 99, 149 and 249 Hz. The 99

and 149 Hz identification data sets were obtained by low pass filtering the 249 Hz bandwidth tests.

The approach here was to identify NARX models and to reduce the number of parameters in the

model using the Modified Gram-Schmidt procedure (cf. Section 4.4.5). The three sets of models were

intended for use in ILC testing on the same three bandwidths.

A first round of preliminary ID trials was conducted to optimize various settings associated

with stable inversion of identified models for the subsequent second round of preliminary ID trials.

The second round of preliminary ID trials was then done to optimize the sample frequency of each

submodel. The inversion settings were again optimized for the optimal sample frequencies, after which

final systematic ID trials were conducted to optimize model order and the model polynomial’s degree

of nonlinearity. Following identification of the final models with the optimal sample frequencies,

inversion settings, model orders and degrees of nonlinearity, the inversion settings were optimized

for the final estimated models. It was found that the inversion settings that were obtained from

optimization on the ID data were not very optimal for predicting the desired drive signal (which is

normally not available) from the desired response signal. Consequently, in order for the focus not to

be too much distracted from determining the potential of nonlinear system identification and model

inversion in response reconstruction, the inversion parameters were again optimized, this time on the

desired drive and response data. (Future research can focus on various strategies to determine the

optimum iteration number in stable inversion without knowledge of the desired drive signal.) The

results of inversion of the various linear and nonlinear and uni- and multi-models are presented in

Tables 4.1 to 4.3. In the case of multi-models it was usually found that divergence of the stable

inversion iteration process occurred at the higher frequency end first. The approach taken here was to

then adjust the gain and number of iterations of lower frequency submodels downward accordingly so

that the PSD spectrum of the inverse multi-model over the combined (total) frequency range is more

or less continuous (i.e. do not show obviously large jumps at the boundaries of sub-models). This was

not extremely rigorously applied but was biased toward higher progress of inversion iteration at the

lower frequencies than rigorous application would have allowed. Nevertheless, in a number of cases it

meant that in lower frequency sub-models inversion iteration was stopped short of the point that yields

lowest inversion error. This does not necessarily translate into a equivalent loss of accuracy of ILC

using such an inversion process because it is very similar to ILC with the full strength inverse (albeit

without divergence) that is scaled down, which is synonymous to ILC with a lower ILC iteration gain

(c).
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Figure 4.7: Quarter vehicle road simulator test rig.
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Figure 4.8: Diagram of quarter vehicle road simulator test rig.
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Figure 4.9: Detail of the motor cycle rig.

Figure 4.10: Strain channel A.
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Figure 4.11: Strain channel B (on the right hand side).

4.7.4 Overall ILC Results

The best results from various tests for ILC on different bandwidths using linear inverse models and

for ILC using nonlinear inverse models are summarized in Table 4.1. The percentage error between

ud(k) and the input calculated during iteration m of stable inversion, namely u(m)(k), is here defined

as:

err2(u
(m)) := 100

(
∑N

k=1(u
(m)(k)− ud(k))

2)1/2

(
∑N

k=1 ud(k)
2)1/2

= 100
||u(m)(k) − ud(k)||2

||ud(k)||2
, (4.80)

and differs from Eq. 2.109 for historical reasons only. Similarly

err2(y
(m)) := 100 ||y(m)(k) − yd(k)||2/||yd(k)||2 . (4.81)

Results are presented for both the achieved input u and the achieved output y. Only the overall results

are presented in these tables, namely the achieved accuracy (specifically, error values) over the whole

test bandwidth. It is clear from these results that ILC with non-linear inverse models give significantly

better results than ILC with linear models.

The best results from various tests for ILC using single inverse models (referred to here as

the “uni-model” approach) and for ILC using inverse multiple-models, for both linear and nonlinear

inverses, are summarized in Table 4.2. Again the results are the overall results, and are presented for

different test bandwidths. It is clear from these results that ILC with multi-models give better results

than ILC with single models.
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Finally, the best overall results from various tests for ILC with the conventional algorithm

and for ILC with the alternative algorithm of Section 3.4 are summarized in Table 4.3 for different

bandwidths. The results are generally mixed, with the conventional algorithm giving better results in

the 99 Hz and 149 Hz bandwidth tests, and the alternative algorithm giving generally better results

in the 249 Hz bandwidth test.
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Table 4.1: Best results for ILC with linear and nonlinear inverse models in L̃ for tests on different

bandwidths.

Channel Description minmerr2(·) [%]

- - 1 - 99 Hz 1 - 149 Hz 1 - 249 Hz

- - u y u y u y

A Linear 42.8 47.9 63.9 51.0 76.8 61.9

A Nonlinear 39.5 47.3 49.6 49.2 52.5 55.4

B Linear 66.9 63.4 59.6 55.2 63.1 61.2

B Nonlinear 47.9 51.7 46.9 48.8 47.0 50.6

Table 4.2: Best results for ILC with single and multiple inverse models in L̃ for tests on different

bandwidths.

Channel Description minmerr2(·) [%]

- - 1 - 99 Hz 1 - 149 Hz 1 - 249 Hz

- - u y u y u y

A Uni-model 50.6 51.5 62.9 51.0 77.1 61.9

A Multi-model 39.5 47.3 49.6 49.2 52.5 55.4

B Uni-model 48.9 51.7 50.0 53.1 54.3 54.0

B Multi-model 47.9 51.7 46.9 48.8 47.0 50.6

Table 4.3: Best results for ILC with the conventional and alternative algorithms for tests on different

bandwidths.

Channel Description minmerr2(·) [%]

- - 1 - 99 Hz 1 - 149 Hz 1 - 249 Hz

- - u y u y u y

A Conventional 39.5 47.3 49.6 49.2 55.1 60.0

A Alternative 43.2 54.0 58.3 59.3 52.5 55.4

B Conventional 47.9 52.4 46.9 49.1 47.0 52.1

B Alternative 49.9 51.7 48.5 48.8 53.2 50.6
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4.7.5 ILC Results in Individual Frequency Bands

In Table 4.4 to Table 4.12 below the errors in individual frequency bands are given for the best u and

y results featured in Table 4.1 to Table 4.3 above, with the results for every test bandwidth presented

in a separate table.

Considering the results for u and y in Tables 4.4, 4.7, and 4.10 the improvement in accuracy

by using nonlinear inverse models is observed in the individual frequency bands also, specifically in

the low (1 - 15 Hz) and upper-medium to high (> 30 Hz) frequency ranges. The low frequency bands

show clear improvements in accuracy which is due to the greater accuracy of the inverse model at

low frequencies. While the improved accuracy of the nonlinear models is easy to show using model

simulation with the identification data (i.e. the data that was used to identify the models), showing it

for the desired response data (by simulating the model with the input that gives the desired response)

is difficult because the nonlinear models tend to be unstable with this data set due to the lower levels

of the “medium amplitude” data set compared to the desired response data, leading to the models

to be used in an extrapolatory sense and thus be unstable. While the model is used in the inverse

sense only and is therefore stably solved, inversion of the model still runs the risk of divergence of the

inversion algorithm. As a consequence of the divergence of the inversion algorithm the inverse may

have worse error norm values than a linear inverse model, despite the nonlinear normal model being

more accurate than the linear normal model, which is indeed observed here with inversion of the desired

response data. Again this is not as detrimental as may be feared since, while the nonlinear inverse may

suffer divergence, the effect of this is to limit the number of iterations allowed to a selected optimum

and thereby reduce the amplitude levels (magnitude) of the calculated inverse while still preserving

the advantages of the more accurate nonlinear dynamics in the sense of better characterization of

the dynamics at the amplitude levels involved. ILC with such an inverse is synonymous with ILC

incorporating a lower iteration gain (i.e. c value), which is as good or better than ILC with a higher

gain. The advantage of such a nonlinear inverse model in ILC is thus that, despite its divergence

and consequent occasional poorer error values than a linear inverse in individual frequency bands (cf.

Tables 4.4 to 4.6), it captures the nonlinearity of the system better and can thus lead to more accurate

ILC, which is indeed what is observed in these results.

On the high frequency end the nonlinear inverse may have much lower error norm values than

the linear inverse. This is because the linear inverse may have very high magnitude at high frequencies

due to the natural attenuation at high frequencies of the model being inverted, which is aggravated by

the typical model inaccuracy at high frequency (due to noise, low signal strength during identification,

and nonlinearities at high frequencies - see Section 3.2.6, which also discusses various approaches to

attenuate the magnitude of the inverse at high frequencies.) Normally the erroneously high magnitude

of the inverse at high frequencies will reduce the bandwidth of convergence of ILC, and the common

way of counteracting this in ILC is to use a C filter designed with attenuation at high frequencies
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(cf. Section 4.2.4). Future work in the use of ILC in response reconstruction should indeed begin

to exploit the C filter to improve the convergent bandwidth. The approach taken here, however,

which is frequent in ILC performed for response reconstruction purposes, is to use C = 1 and instead

rely on the constant c to improve convergence properties (and adjust the rate of convergence). With

this as background, clearly the stable inversion algorithm for inversion of nonlinear models allows

iterations to be limited prior to the onset of excessive magnitude of the output of the inverse model

at high frequencies. Especially in case of multi-models the inversion algorithm gain of high frequency

models may be particularly reduced, independently from the inversion gain of the other sub-models,

allowing reduction of the inverse model output at high frequencies without severely impacting inverse

model output at lower frequencies. (As previously mentioned, in such cases the gain and number of

iterations of lower frequency sub-models were also down-tuned at least somewhat to retain some level

of continuity of the overall spectrum). As a consequence ILC results with nonlinear inverses with these

methods tend to be more accurate at high frequencies than ILC with linear models, especially when

employing a unity C.

The improvements in ILC accuracy obtained by using multiple-models are observed in Table

4.5, Table 4.8, and Table 4.11 for u and y in the individual frequency bands also. In a number

of cases improvement is observed at high frequencies. Apart from one exception this is ascribed to

the use of nonlinear inverse multi-models where the inversion gains may be reduced and/or iteration

during inversion may be cut short to reduce inverse model output generally and at high frequencies

particularly. This is of course not possible with linear uni-models, in which the inversion is one step

(i.e. non-iterative and the high frequencies are not modeled separately).

The exception that was mentioned is the 30 - 99 Hz frequency range in the 99 Hz bandwidth

test, where the unimodel was in fact nonlinear. In this case, while the inversion iteration of the

unimodel may be halted prematurely to limit divergence at high frequencies, the inversion gain may

not be reduced at high frequencies independently of the lower frequency range (at least not in the

standard stable inversion approach).

Moderate increases in accuracy can also be observed at low frequencies in the 99 Hz and 149

Hz bandwidth tests. In the 249 Hz bandwidth test the increase in accuracy at low frequencies become

especially pronounced. This can be generally correlated with the accuracy of the identified models

(evaluated for the desired drive and response data set) where, for both channels, the accuracy of the 1

- 15 Hz frequency band is usually as good or significantly better than for the uni-model, particularly

for the inverse model, where the multi-model tend to give much better results than the uni-model

in the 1 - 15 Hz frequency band. It is also observed for the simulation accuracy of the identified

models that as the test bandwidth increases, and thus the sample frequency of the uni-model relative

to the low frequency band increases, the accuracy of the uni-model in the low frequency band tend

to decrease. The probable explanation for this is that the higher values of the sample frequency of
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the uni-model begins to result in the sample-frequency dependent inaccuracy mechanisms in system

identification at low frequencies to begin to take effect in the uni-model (cf. Section 4.6). While the

effect is not very pronounced for the normal model (probably due to the high A-D precision that was

used, namely 24 bit, and the relatively strong spectrum of the input signals on the low frequency end,

even for the “low amplitude” signals), it is quite apparent in the inverse model accuracy.

Mixed results are observed for using the alternative ILC algorithm compared to the conventional

ILC algorithm in Table 4.6, Table 4.9 and Table 4.12 for u and y in the individual frequency bands

also. It is observed that the alternative algorithm gives worse results on the low frequency end except

for the 249 Hz bandwidth tests for channel A, where it gives much better results. On the mid to high

frequency end the alternative algorithm gives similar to generally better results than the conventional

algorithm. Interpreting these results is difficult but it should be stressed that these results are for

the unmodified alternative algorithm, with the modified version considered more viable and promising

than the unmodified version. Evaluation of the modified version of the alternative algorithm is a

subject of future study.
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Table 4.4: Best results for ILC over 1 - 99 Hz with linear and nonlinear inverse models in L̃ - individual

frequency bands.

Channel Description minmerr2(·) [%]

- - 1 - 15 Hz 15 - 30 Hz 30 - 99 Hz

- - u y u y u y

A Linear 28.2 33.5 76.1 61.7 198.5 118.3

A Nonlinear 32.0 38.2 132.1 75.3 118.5 120.0

B Linear 56.2 50.6 77.6 69.0 277.5 105.7

B Nonlinear 44.2 37.3 113.3 65.6 103.9 91.8

Table 4.5: Best results for ILC over 1 - 99 Hz with single and multiple inverse models in L̃ - individual

frequency bands. Lin. and NL indicates whether the uni- or multi-model was linear or nonlinear

respectively.

Channel Description minmerr2(·) [%]

- - 1 - 15 Hz 15 - 30 Hz 30 - 99 Hz

- - u y u y u y

A Uni-model (Lin.) 37.5 37.3 69.5 62.1 189.3 102.8

A Multi-model (NL) 32.0 38.2 132.1 75.3 118.5 120.0

B Uni-model (NL) 38.5 37.9 91.1 59.9 228.2 94.2

B Multi-model (NL) 44.2 37.3 113.3 65.6 103.9 91.8

Table 4.6: Best results for ILC over 1 - 99 Hz with the conventional and alternative algorithms -

individual frequency bands.

Channel Description minmerr2(·) [%]

- - 1 - 15 Hz 15 - 30 Hz 30 - 99 Hz

- - u y u y u y

A Conventional 32.0 38.2 132.1 75.3 118.5 120.0

A Alternative 41.6 47.7 124.7 62.2 104.8 99.6

B Conventional 44.2 36.8 113.3 60.2 103.9 100.2

B Alternative 46.5 37.3 110.9 65.6 103.0 91.8
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Table 4.7: Best results for ILC over 1 - 149 Hz with linear and nonlinear inverse models in L̃ -

individual frequency bands.

Channel Description minmerr2(·) [%]

- - 1 - 15 Hz 15 - 30 Hz 30 - 99 Hz 99 - 149 Hz

- - u y u y u y u y

A Linear 52.5 42.4 67.8 55.5 174.8 102.4 159.0 205.3

A Nonlinear 45.8 43.0 85.2 72.1 106.7 109.1 99.6 109.9

B Linear 49.7 38.5 82.3 65.3 196.8 101.8 126.0 83.5

B Nonlinear 39.6 33.9 77.2 67.8 132.2 83.2 95.3 88.7

Table 4.8: Best results for ILC over 1 - 149 Hz with single and multiple inverse models in L̃ -

individual frequency bands. Lin. and NL indicates whether the uni- or multi-model was linear or

nonlinear respectively.

Channel Description minmerr2(·) [%]

- - 1 - 15 Hz 15 - 30 Hz 30 - 99 Hz 99 - 149 Hz

- - u y u y u y u y

A Uni-model (Lin.) 58.3 42.4 84.0 55.5 154.1 102.4 107.5 205.3

A Multi-model (NL) 45.8 43.0 85.2 72.1 106.7 109.1 99.6 109.9

B Uni-model (NL) 41.9 36.2 107.8 61.8 180.7 100.4 88.2 99.7

B Multi-model (NL) 39.6 33.9 77.2 67.8 132.2 83.2 95.3 88.7

Table 4.9: Best results for ILC over 1 - 149 Hz with the conventional and alternative algorithms -

individual frequency bands.

Channel Description minmerr2(·) [%]

- - 1 - 15 Hz 15 - 30 Hz 30 - 99 Hz 99 - 149 Hz

- - u y u y u y u y

A Conventional 45.8 43.0 85.2 72.1 106.7 109.1 99.6 109.9

A Alternative 55.7 53.7 88.4 78.8 120.3 105.7 101.2 104.3

B Conventional 39.6 31.8 77.2 70.5 132.2 85.0 95.3 80.7

B Alternative 40.8 33.9 78.5 67.8 154.4 83.2 92.6 88.7
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Table 4.10: Best results for ILC over 1 - 249 Hz with linear and nonlinear inverse models in L̃ -

individual frequency bands.

Channel Description minmerr2(·) [%]

- - 1 - 15 Hz 15 - 30 Hz 30 - 99 Hz 99 - 149 Hz 149 - 249 Hz

- - u y u y u y u y u y

A Linear 63.5 55.1 69.2 67.4 137.9 110.5 171.4 179.0 472.2 227.2

A Nonlinear 45.1 40.9 88.6 82.2 99.7 114.2 100.6 109.5 97.9 105.2

B Linear 52.8 42.0 76.6 70.8 159.5 115.1 124.4 101.1 322.9 124.0

B Nonlinear 41.5 31.5 85.6 72.6 126.8 89.0 89.1 88.1 128.4 105.1

Table 4.11: Best results for ILC over 1 - 249 Hz with single and multiple inverse models in L̃ -

individual frequency bands. Lin. and NL indicates whether the uni- or multi-model was linear or

nonlinear respectively.

Chan. Description minmerr2(·) [%]

- - 1 - 15 Hz 15 - 30 Hz 30 - 99 Hz 99 - 149 Hz 149 - 249 Hz

- - u y u y u y u y u y

A Uni-model (Lin.) 77.3 55.1 109.1 67.4 112.7 110.5 109.3 179.0 100.1 227.2

A Multi-model (NL) 45.1 40.9 88.6 82.2 99.7 114.2 100.6 109.5 97.9 105.2

B Uni-model (NL) 42.9 39.8 90.1 62.9 193.1 91.5 98.4 80.2 127.0 109.1

B Multi-model (NL) 41.5 31.5 85.6 72.6 126.8 89.0 89.1 88.1 128.4 105.1

Table 4.12: Best results for ILC over 1 - 249 Hz with the conventional and alternative algorithms -

individual frequency bands.

Channel Description minmerr2(·) [%]

- - 1 - 15 Hz 15 - 30 Hz 30 - 99 Hz 99 - 149 Hz 149 - 249 Hz

- - u y u y u y u y u y

A Conventional 51.5 55.7 85.0 79.4 102.2 112.2 105.1 120.6 97.6 119.4

A Alternative 45.1 40.9 88.6 82.2 99.7 114.2 100.6 109.5 97.9 105.2

B Conventional 41.5 29.7 85.6 72.3 126.8 99.4 89.1 87.3 128.4 111.4

B Alternative 45.9 31.5 78.5 72.6 157.3 89.0 90.4 88.1 108.9 105.1
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Chapter 5

Conclusions

The contributions of this research lie in three main areas, namely stable inversion, the ILC algorithm,

and response reconstruction as used in structural integrity testing.

5.1 Stable Inversion

It is frequently found that the stable inversion of NARXmodels, which result from system identification

during response reconstruction tests in this research, prove to be divergent, and often strongly so. This

research made two novel contributions aimed at improving the accuracy of stable inversion under such

circumstances (either by recovery of convergence or lessening the strength of divergence), namely

incorporating alternative iteration schemes from the field of fixed point iteration, and incorporating

a low pass filter in the algorithm. In a set of three examples in Chapter 2 the gains in accuracy

when stable inversion of NARX models diverges was confirmed for stable inversion using the Mann

iteration scheme, and for using a low pass filter in the algorithm. The results demonstrated either the

recovery of convergence using these two measures (examples 1 and 2), or a reduction in the strength

of divergence (and thus increased accuracy of inversion results prior to divergence; Example 3). The

examples also demonstrated improvements in accuracy of stable inversion by using different strategies

for the gain employed in Mann iteration instead of a constant gain value, namely a time-dependent

and iteration dependent gain (with the latter being a novel contribution to Mann iteration to the

author’s knowledge).

5.2 Iterative Learning Control

Towards improving the convergence properties of the ILC algorithm an alternative ILC algorithm was

developed that functions inherently differently to the conventional algorithm. Further modifications
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were also made to get the alternative algorithm to fully match the conventional algorithm in some

of the most important fundamental properties of the algorithm. The algorithm in unmodified form

was demonstrated in an example consisting of a set of five case studies to either result in dramati-

cally improved convergence properties, or comparable to slightly inferior results to the conventional

algorithm.

The ability of ILC to converge over a given frequency band depends on the ILC compensator’s

dynamics over the band, with best results achieved when employing an inverse model of at least

“reasonable” accuracy in the compensator. While the accuracy of the inverse model is not essential

for the convergence of ILC, the more accurate it is the better the chances of achieving convergence are,

or at least of achieving good results prior to divergence. A novel contribution of this research is the

incorporation of nonlinear inverse models in the ILC compensator in case of ILC of nonlinear systems,

with the intention of improving the accuracy of the inverse model in these cases and thereby improve

the convergence properties of ILC. While this has been suggested by Markusson (2002) in a purely ILC

context, it was not recommended in the paper due to issues of complexity of the inversion process. In

Chapter 4 the stable inversion process for NARX models in particular, which are the type of nonlinear

models used in this research, was developed for slight limitations imposed on the model prior to to

inversion. The inescapable reality of this approach is however that stable inversion, which is conducted

for every iteration of ILC, is itself iterative for nonlinear inverses, which substantially impacts ILC

by increasing complexity and computational intensity. In response reconstruction tests for purposes

full-scale fatigue testing the added complexity during the ILC phase is considered justified if it can

result in sufficient gains in accuracy. The use of a nonlinear inverse model in the ILC compensator

was examined in the examples in Chapter 3, where it was found to indeed contribute to more accurate

results in a case where ILC was divergent.

5.3 Response Reconstruction

In Chapter 3 a number of model based and inverse based ILC compensators in the literature that are

meant to obtain monotonic convergence of ILC of linear systems were presented. These were shown

to be special cases of a very general ILC compensator,

L = cCL̃ ,

which is called here the general inverse-based (GIB) compensator, with L̃ the approximate system

inverse, C a zero phase filter, and c a real scalar. As a novel contribution this ILC compensator is

recommended for general use in response reconstruction. While a closely related form, L = cL̃, is

currently already used in response reconstruction, the addition of the C filter is new in the response

reconstruction setting to the knowledge of the author.
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Response reconstruction utilizes ILC to achieve the tracking of desired response signals that

simulate service loading of the specimen for purposes of structural integrity testing. The success of

response reconstruction depends on the ILC procedure being well-behaved (i.e. maintain progressive

convergence without temporary wide divergence) during the iteration process, and on the accuracy of

the final reconstruction results. While the preferred outcome of ILC is to achieve convergence of the

algorithm, ideally over a frequency band sufficient for the requirements of the test, this is frequently not

achieved in dynamic response reconstruction tests (such as fatigue tests, and shock and/or vibration

tests) primarily due to the limited accuracy of the inverse models employed in the ILC compensator

over the frequency band of the test. Two mechanisms contributing to reduced accuracy of the inverse

model are the following:

• Nonlinearity of the test system: When the test system is sufficiently nonlinear, the accuracy

of a linear inverse model may be inadequate to achieve convergence of ILC or at least achieve

reconstruction results of sufficient accuracy prior to divergence. The incorporation of a nonlinear

inverse model in the ILC compensator aimed at alleviating this was referred to in Section 5.2

as a novel contribution of this research. The nonlinear models used in this research is of the

NARX type, and in Chapter 4 the stable inversion process for NARX models in particular was

developed. In a quarter vehicle road simulator demonstration rig the use of nonlinear inverse

models of the NARX type in the ILC compensator was shown to lead to appreciable gains in

the accuracy of response reconstruction.

• Wide frequency band of the model: Response reconstruction for fatigue testing purposes can

sometimes require a test band with upper limit in the range of 50 - 100 Hz. In case of shock

and vibration tests the upper frequency limit can far exceed 100 Hz. This implies that the

test engineer is sometimes confronted with tests requiring modelling over wide frequency bands.

Ljung (1999) reported on this problem already in the first edition of his book in 1987 in the

context of linear system identification, recommending to partition the frequency band in separate

bands that are modelled separately. Chapter 4 lists a number of mechanisms of inaccuracy in

the identification of ARX and NARX models, including mechanisms ascribed to the high relative

sample frequency arising in wide band models. The motivation and (novel) development of a

multi-model scheme for nonlinear inverse models for use in ILC in response reconstruction was

presented in Chapter 4. The use of the multiple model approach was furthermore evaluated

in the quarter vehicle road simulator and was shown to also lead to appreciable gains in the

accuracy of response reconstruction.

The alternative ILC algorithm (in unmodified form), that was developed in Chapter 3, was

also evaluated on the quarter vehicle road simulator, however the results were of comparable to

slightly inferior accuracy to the results of the conventional algorithm. In view of the promising
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results obtained with the alternative algorithm in Chapter 3, it is recommended to further evaluate

the alternative algorithm, and in particular the modified form, in the response reconstruction setting

in future research.

5.4 Recommendations for Future Research

Recommendations for further research on stable inversion:

• The time dependent gain employed in Mann iteration in stable inversion was found to be of

value. There are many possibilities for the design of the time-dependence function, and the best

approach need to be found.

• This research didn’t devote much attention to the use of Ishikawa iteration in stable inversion.

Further work is needed to investigate the possible utility of Ishikawa iteration in improving the

results of stable inversion of NARX models, including the use of iteration dependent and time

dependent gains.

• Theorem 2.3 for showing that Mann iteration converges under weaker conditions than Picard

iteration may be improved with further research, possibly leading to or requiring changes to

Theorem 2.2.

Recommendations for further research in ILC:

• The modified alternative ILC algorithm needs to be evaluated in comparison with the alter-

native and conventional algorithms in examples similar to those in Chapter 3 and in response

reconstruction.

• This research showed that the use of Mann and Ishikawa iteration in stable inversion has an

analogy in ILC in that the conventional and alternative ILC algorithms developed here both have

parallels in the Picard and Mann iteration schemes (when using the GIB compensator). It is

furthermore shown that the application of Ishikawa iteration to ILC results in novel ILC iteration

schemes for both the conventional and alternative ILC algorithms. The adaptation of ILC along

the lines of Ishikawa was done in Chapter 3 for the conventional algorithm (with extension to

the alternative algorithm being obvious), but still needs to be evaluated in theoretical examples

and practical implementation in response reconstruction.

• ILC in this research was evaluated with either constant or iteration dependent gains. The possible

contribution of time-dependent ILC gains still need to be evaluated in theoretical examples and

practical implementation in response reconstruction.
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• The models in the stable inversion in this research are all analytical (i.e. smooth). ILC need to be

investigated for inverting non-smooth models (that may be obtained by system identification but

are difficult to invert) by approximating such models with smooth models (e.g. NARX models)

and then using the smooth approximate models in stable inversion in ILC that is done on the

non-smooth model as if on a physical system. If successful this may improve the accuracy of

ILC on non-smooth physical systems by virtue of the better accuracy of the ILC-based inversion

of identified non-smooth models of such systems than of stable inversion of smooth approximate

models of such systems. This implies the use of ILC for purposes of inversion in the ILC

compensator of ILC on a system, i.e. a nested ILC.

Recommendations for further research on response reconstruction:

• Alternative nonlinear model formulations and their identification need to be investigated, amongst

others for modelling of non-smooth physical systems, possibly including neural network meth-

ods. The inversion of such alternative model formulations need to be studied and developed,

possibly using ILC on the model to invert the model. This may be done along the lines of

the Newton method of ILC (employing a time-varying linear inverse), or by using a simplified

(smooth and/or lower degree of nonlinearity) nonlinear inverse model in the ILC compensator

(that is solved with stable inversion or a third level of nested ILC).

• Investigate the effect of reduced sample frequency on the model order of a low frequency nonlinear

submodel of a system in a multiple model approach to confirm that it indeed leads to lower

model orders. If so this is a major advantage of the multiple model approach because the curse

of dimensionality cause the size of nonlinear models to dramatically increase with the number of

regressors (input and output terms). If low frequency submodels naturally involve lower model

orders (fewer regressors) this will mean the typical and highly fatigue-relevant nonlinearity in low

frequencies may be better modelled because nonlinear system identification is often limited by

the computational intensity of searching for large numbers of potentially relevant model terms.
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